闭区间套定理(Nested intervals theorem)讲解2




①确界与极限,看完这篇你才能明白 http://www.cnblogs.com/iMath/p/6265001.html
②这个批注由这个问题而来


表示$c$可能在$\bigcap_{n=1}^{\infty} (a_{n},b_{n})$或$\bigcap_{n=1}^{\infty} (a_{n},b_{n}]$或$\bigcap_{n=1}^{\infty} [a_{n},b_{n})$或$\bigcap_{n=1}^{\infty} [a_{n},b_{n}]$内,$\bigcap_{n=1}^{\infty} (a_{n},b_{n})$、$\bigcap_{n=1}^{\infty} (a_{n},b_{n}]$、$\bigcap_{n=1}^{\infty} [a_{n},b_{n})$都是 $\bigcap_{n=1}^{\infty} [a_{n},b_{n}]$的真子集,$c$可以不在$\bigcap_{n=1}^{\infty} (a_{n},b_{n})$或$\bigcap_{n=1}^{\infty} (a_{n},b_{n}]$或$\bigcap_{n=1}^{\infty} [a_{n},b_{n})$内,但是$c$不可能不在$\bigcap_{n=1}^{\infty} [a_{n},b_{n}]$中,否则就与

矛盾了。所以在这里只有$\bigcap_{n=1}^{\infty} [a_{n},b_{n}]$才一定包含$c$,其它三种区间的交集形式仅仅只是可能包含$c$,这也启示我们并不只是只有闭区间套可以包含$c$,其它三种区间的交集也可以包含$c$。
③这里用到了极限与不等关系


闭区间套定理(Nested intervals theorem)讲解2的更多相关文章
- 闭区间套定理(Nested intervals theorem)讲解1
① ②这里用到了极限与不等关系 ③如果a≠b,那么便不会有$\lim _{n\rightarrow \infty }\left| I_n \right| =0$ ④如果还存在一点c在 内,那么同样也不 ...
- 闭区间套定理(Nested intervals theorem)
① ②这里用到了极限与不等关系 ③如果a≠b,那么便不会有$\lim _{n\rightarrow \infty }\left| I_n \right| =0$ ④如果还存在一点c在内,那么同样也不会 ...
- 华东师范大学p163页,用闭区间套定理证明数列的可惜收敛准则,被网友解决了。
- 主定理(Master Theorem)与时间复杂度
1. 问题 Karatsuba 大整数的快速乘积算法的运行时间(时间复杂度的递推关系式)为 T(n)=O(n)+4⋅T(n/2),求其最终的时间复杂度. 2. 主定理的内容 3. 分析 所以根据主定理 ...
- [笔记] 兰道定理 Landau's Theorem
兰道定理的内容: 一个竞赛图强连通的充要条件是:把它的所有顶点按照入度d从小到大排序,对于任意\(k\in [0,n-1]\)都不满足\(\sum_{i=0}^k d_i=\binom{k+1}{2} ...
- 斯托克斯定理(Stokes' theorem)
1. 几种形式 ∮∂SPdx+Qdy+Rdz=∬S∣∣∣∣∣∣cosα∂∂xPcosβ∂∂yQcosγ∂∂zR∣∣∣∣∣∣dS ∮∂Ωw=∬Ωdw 左边是内积: 右边是外积: 物理上的应用: ∮∂SE ...
- 无限二等分[0,1]这个区间之后还剩下啥?what's left after dividing an unit interval [0,1] infinitely many times?
Dividing an unit interval \([0,1]\) into two equal subintervals by the midpoint \(\dfrac {0+1} {2}=\ ...
- 从一个点的长度是多少说起(Talking started from the length of a point on the real number line)
From the perspective of analytical geometry, an interval is composed of infinitely many points, whil ...
- 深入理解无穷级数和的定义(the sum of the series)
Given an infinite sequence (a1, a2, a3, ...), a series is informally the form of adding all those te ...
随机推荐
- Swift 类型桥接
前言 iOS 中的 API 基本都是在许多年前由 OC 写成的,现在通过桥接的方法在 Swift 中可以用,基本看不出区别,非常自然.但是一些特殊的类型,在两种语言进行桥接的时候需要特别注意. 1.N ...
- css组合选择器
组合选择器:1,后代选择器 .main h2 {...}, 使用空格表示 IE6+2,子选择器 .main>h2 {...}, 使用 > 表示 IE7+3,兄弟选择器 h2+p {...} ...
- 2.Swift快速浏览
传统认为,在一个新的语言的第一个程序要在屏幕上显示“Hello world!”.在Swift,可以用一行代码来完成: println("Hello, world!") 如果你已经在 ...
- sql in not in 案例用 exists not exists 代替
from AppStoke B WHERE B.Opencode=A.Code) in用extist代替 select distinct * from Stoke where Code not in ...
- Vue+element组合el-table-column表头宽度自定义
[本文出自天外归云的博客园] 需求 1. 某列表头文字内容过长,要对每列表头自定义宽度 2. 表格row的每一column文字不换行,超过列宽则省略,mouseover有提示 3. 对于label做滤 ...
- 在Pandas中更改列的数据类型【方法总结】
先看一个非常简单的例子: a = [['a', '1.2', '4.2'], ['b', '70', '0.03'], ['x', '5', '0']] df = pd.DataFrame(a) 有什 ...
- spring中定时任务quartz2.2.3
定时任务几种实现方式 Java自带的java.util.Timer类,这个类允许你调度一个java.util.TimerTask任务,没怎么用过就不说了.Spring3.0以后自带的task,可以将它 ...
- Hadoop 2.x 安装常见问题FAQ(一) NodeManager 无法启动问题解决
一.问题描述 在搭建 Hadoop hadoop-2.4.1 集群的最后一步启动集群,在命令窗口并没有报任何错误,但是Slave 节点的 NodeManager进程始终启动不起来.随后查看了后台启动日 ...
- mercurial的几个易用性小技巧
其实这两年,能够采用mercurial的项目我都尽量用,甚至有些上游是git的,或者需要托管到公司内gitlab上与别人协作的,我都装上hg-git.无它,只是因为mercurial易用性比git好得 ...
- Python匿名函数——lambda表达式
如果要定义的函数很简单,一个return语句就能搞定,可以使用lambda表达式来定义, lambda表达式的语法如下: lambda parameters: expression lambda表达式 ...