欢迎访问~原文出处——博客园-zhouzhendong

去博客园看该题解


题目传送门 - BZOJ3673


题意概括

n个集合 m个操作
操作:
1 a b 合并a,b所在集合
2 k 回到第k次操作之后的状态(查询算作操作)
3 a b 询问a,b是否属于同一集合,是则输出1否则输出0

0<n,m<=2*10^4


题解

  上板子


代码

#include <cstring>
#include <algorithm>
#include <cstdio>
#include <cstdlib>
#include <cmath>
using namespace std;
const int N=20005;
bool isd(char ch){
return '0'<=ch&&ch<='9';
}
void read(int &x){
x=0;
char ch=getchar();
while (!isd(ch))
ch=getchar();
while (isd(ch))
x=x*10+ch-48,ch=getchar();
}
int n,m,size,root[N],fa[N*50],ls[N*50],rs[N*50],depth[N*50];
int build(int L,int R){
int rt=++size;
if (L==R){
fa[rt]=L,depth[rt]=0;
return rt;
}
int mid=(L+R)>>1;
ls[rt]=build(L,mid);
rs[rt]=build(mid+1,R);
return rt;
}
int query(int rt,int le,int ri,int pos){
if (le==ri)
return rt;
int mid=(le+ri)>>1;
if (pos<=mid)
return query(ls[rt],le,mid,pos);
else
return query(rs[rt],mid+1,ri,pos);
}
void Modify(int prt,int &rt,int le,int ri,int pos,int val){
rt=++size;
if (le==ri){
fa[rt]=val;
depth[rt]=depth[prt];
return;
}
ls[rt]=ls[prt],rs[rt]=rs[prt];
int mid=(le+ri)>>1;
if (pos<=mid)
Modify(ls[prt],ls[rt],le,mid,pos,val);
else
Modify(rs[prt],rs[rt],mid+1,ri,pos,val);
}
void add(int rt,int le,int ri,int pos){
if (le==ri){
depth[rt]++;
return;
}
int mid=(le+ri)>>1;
if (pos<=mid)
add(ls[rt],le,mid,pos);
else
add(rs[rt],mid+1,ri,pos);
}
int find(int rt,int pos){
int p=query(rt,1,n,pos);
if (pos==fa[p])
return p;
return find(rt,fa[p]);
}
int main(){
size=0;
read(n),read(m);
root[0]=build(1,n);
for (int i=1;i<=m;i++){
int op,a,b;
root[i]=root[i-1];
read(op),read(a);
if (op==1){
read(b);
a=find(root[i],a),b=find(root[i],b);
if (fa[a]==fa[b])
continue;
if (depth[a]>depth[b])
swap(a,b);
Modify(root[i-1],root[i],1,n,fa[a],fa[b]);
if (depth[a]==depth[b])
add(root[i],1,n,fa[b]);
}
else if (op==2)
root[i]=root[a];
else {
root[i]=root[i-1];
read(b);
a=find(root[i],a),b=find(root[i],b);
printf("%d\n",fa[a]==fa[b]);
}
}
return 0;
}

  

BZOJ3673 可持久化并查集 by zky 可持久化 并查集的更多相关文章

  1. 【BZOJ3673】&&【BZOJ3674】: 可持久化并查集 by zky 可持久化线段树

    没什么好说的. 可持久化线段树,叶子节点存放父亲信息,注意可以规定编号小的为父亲. Q:不是很清楚空间开多大,每次询问父亲操作后修改的节点个数是不确定的.. #include<bits/stdc ...

  2. BZOJ3673 可持久化并查集 by zky 【主席树】

    BZOJ3673 可持久化并查集 by zky Description n个集合 m个操作 操作: 1 a b 合并a,b所在集合 2 k 回到第k次操作之后的状态(查询算作操作) 3 a b 询问a ...

  3. bzoj3673可持久化并查集 by zky&&bzoj3674可持久化并查集加强版

    bzoj3673可持久化并查集 by zky 题意: 维护可以恢复到第k次操作后的并查集. 题解: 用可持久化线段树维护并查集的fa数组和秩(在并查集里的深度),不能路径压缩所以用按秩启发式合并,可以 ...

  4. 【BZOJ】3673: 可持久化并查集 by zky & 3674: 可持久化并查集加强版(可持久化线段树)

    http://www.lydsy.com/JudgeOnline/problem.php?id=3674 http://www.lydsy.com/JudgeOnline/problem.php?id ...

  5. 3673: 可持久化并查集 by zky

    3673: 可持久化并查集 by zky Time Limit: 5 Sec  Memory Limit: 128 MBSubmit: 2170  Solved: 978[Submit][Status ...

  6. Bzoj 3673: 可持久化并查集 by zky(主席树+启发式合并)

    3673: 可持久化并查集 by zky Time Limit: 5 Sec Memory Limit: 128 MB Description n个集合 m个操作 操作: 1 a b 合并a,b所在集 ...

  7. bzoj 3673&3674: 可持久化并查集 by zky

    Description n个集合 m个操作 操作: 1 a b 合并a,b所在集合 2 k 回到第k次操作之后的状态(查询算作操作) 3 a b 询问a,b是否属于同一集合,是则输出1否则输出0 0& ...

  8. bzoj 3673&3674 可持久化并查集&加强版(可持久化线段树+启发式合并)

    CCZ在2015年8月25日也就是初三暑假要结束的时候就已经能切这种题了%%% 学习了另一种启发式合并的方法,按秩合并,也就是按树的深度合并,实际上是和按树的大小一个道理,但是感觉(至少在这题上)更好 ...

  9. 并查集——poj1703(带权并查集入门)

    传送门:Find them, Catch them 题意:警察抓获N个罪犯,这些罪犯只可能属于两个团伙中的一个,现在给出M个条件(D a b表示a和b不在同一团伙),对于每一个询问(A a b)确定a ...

随机推荐

  1. 在window系统下安装Sass

    1.Ruby下载 因为Sass依赖于Ruby环境,所以应先在window系统下安装Ruby,Ruby安装包下载链接:http://rubyinstaller.org/downloads/ 2.Ruby ...

  2. jquery选择器最后一个,倒数第二个元素

    <div> <p>1</p> <p>2</p> <p>3</p> <p>4</p> < ...

  3. Ngnix + Tomcat负载均衡架构

    一.nginx Nginx (发音同 engine x)是一款轻量级的Web 服务器/反向代理服务器及电子邮件(IMAP/POP3)代理服务器,并在一个BSD-like 协议下发行.  其特点是占有内 ...

  4. 在Mysql中查询两个时间段的差,可以是秒,天,星期,月份,年...

    SELECT TIMESTAMPDIFF(SECOND, now(), "2016-11-11 00:00:00") 语法为:TIMESTAMPDIFF(unit,datetime ...

  5. 扫AR

  6. java并发编程系列四、AQS-AbstractQueuedSynchronizer

    什么是AbstractQueuedSynchronizer?为什么我们要分析它?  AQS:抽象队列同步器,原理是:当多个线程去获取锁的时候,如果获取锁失败了,当前线程就会被打包成一个node节点放入 ...

  7. CentOS7 虚拟机设置文件共享 VMWareTools安装遇到的坑

    设置文件共享的前提条件是已经安装好VMware Tools. 现在从安装VMware Tools开始讲起: 第一步:安装VMware Tools (如果安装的centos是最小安装,需要提前安装组件g ...

  8. centos系统初始化脚本

    #!/bin/bash #检测是否为root用户 ];then echo "Must be root can do this." exit fi #检测网络 echo " ...

  9. HTTP SIP 认证

    HTTP请求报头: Authorization HTTP响应报头: WWW-Authenticate   HTTP认证  基于  质询  /回应(  challenge/response)的认证模式. ...

  10. Expm 4_1 多段图中的最短路径问题

      [问题描述] 建立一个从源点S到终点T的多段图,设计一个动态规划算法求出从S到T的最短路径值,并输出相应的最短路径. 解 package org.xiu68.exp.exp4; public cl ...