标准库random
pseudo-random number generators for various distributions.
Almost all module functions depend on the basic function random()
, which generates a random float uniformly in the semi-open range [0.0, 1.0).
Python uses the Mersenne Twister as the core generator.
The pseudo-random generators of this module should not be used for security purposes. For security or cryptographic uses, see the secrets
module.
The functions supplied by this module are actually bound methods of a hidden instance of the random.Random
class.
Class Random
can also be subclassed if you want to use a different basic generator of your own devising: in that case, override the random()
, seed()
, getstate()
, and setstate()
methods.
seed: 当设置相同的seed时,可以得到相同的随机数。
random.seed(1)
a2 = random.random()
print(a2) random.seed(0)
a11 = random.random()
print(a11 == a1) result:
0.8444218515250481
0.13436424411240122
True
getstate:
Return an object capturing the current internal state of the generator. This object can be passed to setstate()
to restore the state.
从下面的结果来看,可能和seed有关。
s1 = random.getstate() # a tuple of length 3
print(len(s1[1]), s1)
random.seed(0)
a1 = random.random()
s2 = random.getstate()
print(len(s2[1]), s2) random.seed(1)
a2 = random.random()
s3 = random.getstate()
print(len(s3[1]), s3) random.seed(0)
a11 = random.random()
s4 = random.getstate()
print(len(s4[1]), s4)
print(s4 == s2) result:
625 (3, (2147483648, ..., 3028008404, 624), None)
625 (3, (1372342863, ..., 418789356, 2), None)
625 (3, (2145931878, ..., 3656373148, 2), None)
625 (3, (1372342863, ..., 418789356, 2), None)
True
setstate: 貌似功能与seed一样,都是到达某一状态。
random.seed(0)
s1 = random.getstate()
a1 = random.random()
s2 = random.getstate()
print(a1, s2 == s1) # s2 != s1, 因为生成了一次随机数,状态变了 random.seed(1)
a2 = random.random()
s3 = random.getstate()
print(s3 == s2) # False # random.seed(0)
random.setstate(s1) # 设置为s1才能使a11 == a1, 和s2状态不同。有点像翻书的过程,翻到那一页,首先看到的内容总是一样的。
s4 = random.getstate()
print(s4 == s1) # True
a11 = random.random()
s5 = random.getstate()
print(a11 == a1, s5 == s2) # True True 在s4 == s1的状态下,执行一个相同操作,执行后的状态也相同。
getrandbits:
Returns a Python integer with k random bits. This method is supplied with the MersenneTwister generator and some other generators may also provide it as an optional part of the API. When available, getrandbits()
enables randrange()
to handle arbitrarily large ranges.
k random bits
is supplied with
k = random.getrandbits(1) # 0、1
k = random.getrandbits(2) # 0、1、2、3
k = random.getrandbits(3) # 0、1、2、3、4、5、6、7
print(k)
Functions for integers
randrange:
This is equivalent to choice(range(start, stop, step))
.
Keyword arguments should not be used because the function may use them in unexpected ways.
randrange()
is more sophisticated about producing equally distributed values. 【Formerly it used a style like int(random()*n)
which could produce slightly uneven distributions.】
r = random.randrange(2, 5)
c = random.choice(range(2, 5))
print(c)
randint(a, b):
Return a random integer N such that a <= N <= b
. Alias for randrange(a, b+1)
.
Functions for sequences
choice(seq):
arg is a seq.
If seq is empty, raises IndexError
.
choices(population, weights=None, *, cum_weights=None, k=1):
Return a k sized list of elements chosen from the population with replacement(复位,即可以放回重复抽取). If the population is empty, raises IndexError
.
If a weights sequence is specified, selections are made according to the relative weights. Alternatively, if a cum_weights sequence is given, the selections are made according to the cumulative weights (perhaps computed using itertools.accumulate()
). For example, the relative weights [10, 5, 30, 5]
are equivalent to the cumulative weights [10, 15, 45, 50]
. Internally, the relative weights are converted to cumulative weights before making selections, so supplying the cumulative weights saves work.
If neither weights nor cum_weights are specified, selections are made with equal probability(从这点看来,前面的权重指的是某数值被选中的概率). If a weights sequence is supplied, it must be the same length as the population sequence. It is a TypeError
to specify both weights and cum_weights.
cs = random.choices([1, 3, 5, 7, 9], weights=[8, 6, 4, 2, 5], k=2)
print(cs) # with replacement, [3, 3]
shuffle(x[, random]):
Shuffle the sequence.
The optional argument random is a 0-argument function returning a random float in [0.0, 1.0); by default, this is the function random()
.
To shuffle an immutable sequence and return a new shuffled list, use sample(x, k=len(x))
instead.
l = [1, 3, 5, 7, 9, 3]
s = random.shuffle(l) # 修改序列本身,所以参数必须是可变类型。
print(l, s)
sample(population, k):
Return a k length list of unique elements chosen from the population sequence or set. Used for random sampling without replacement.
Returns a new list containing elements from the population while leaving the original population unchanged.
Members of the population need not be hashable or unique. If the population contains repeats, then each occurrence is a possible selection in the sample.
To choose a sample from a range of integers, use a range()
object as an argument. This is especially fast and space efficient for sampling from a large population: sample(range(10000000), k=60)
.
If the sample size is larger than the population size, a ValueError
is raised.
# l = (1, 3, 5, 7, 9, 3)
l = [1, 3, 5, 7, 9, 3] #可变类型也可
s = random.sample(l, 2)
print(l, s) # (1, 3, 5, 7, 9, 3) [9, 1]
Real-valued distributions
random(): Return the next random floating point number in the range [0.0, 1.0).
uniform(a, b): 应该是均匀分布,但是从返回值来看,貌似对应不起来??
Return a random floating point number N such that a <= N <= b
for a <= b
and b <= N <= a
for b < a
.
equation:
return a + (b-a) * self.random()
triangular(low, high, mode):
Return a random floating point number N such that low <= N <= high
and with the specified mode between those bounds. The low and high bounds default to zero and one. The mode argument defaults to the midpoint between the bounds, giving a symmetric distribution.
gauss(mu, sigma):
Gaussian distribution. mu is the mean, and sigma is the standard deviation. This is slightly faster than the normalvariate()
function.
标准库random的更多相关文章
- Python基础--人们一些最爱的标准库(random time)
Python继续! random 包括返回随机数的函数. 这里跟C++一样,产生的是伪随机数,并非全然随机数. random中一些重要的函数: random() 返回0<n<=1的随机数n ...
- Python标准库---random模块的使用
更新时间:2019.09.12(更新目录) 目录 1. 谈谈随机数 2. random模块 2.1 random.seed() 2.2 random.random() 2.3 random ...
- Python标准库Random
基本方法 获取一个[0,1)的随机浮点数: import random print(random.random()) #输出 0.6701488343121276 获取指定区间的随机浮点数: impo ...
- Python标准库12 数学与随机数 (math包,random包)
作者:Vamei 出处:http://www.cnblogs.com/vamei 欢迎转载,也请保留这段声明.谢谢! 我们已经在Python运算中看到Python最基本的数学运算功能.此外,math包 ...
- python标准库总的random函数用法
Python标准库中的random函数,可以生成随机浮点数.整数.字符串,甚至帮助你随机选择列表序列中的一个元素,打乱一组数据等.random中的一些重要函数的用法:1 ).random() 返回0& ...
- python标准库介绍——27 random 模块详解
==random 模块== "Anyone who considers arithmetical methods of producing random digits is, of cour ...
- python常用标准库(math数学模块和random随机模块)
常用的标准库 数学模块 import math ceil -- 上取整 对一个数向上取整(进一法),取相邻最近的两个整数的最大值. import math res = math.ceil(4.1) p ...
- python学习笔记系列----(八)python常用的标准库
终于学到了python手册的最后一部分:常用标准库.这部分内容主要就是介绍了一些基础的常用的基础库,可以大概了解下,在以后真正使用的时候也能想起来再拿出来用. 8.1 操作系统接口模块:OS OS模块 ...
- windows下的c语言和linux 下的c语言以及C标准库和系统API
1.引出我们的问题? 标准c库都是一样的!大家想必都在windows下做过文件编程,在linux下也是一样的函数名,参数都一样.当时就有了疑问,因为我们非常清楚 其本质是不可能一样的,源于这是俩个操作 ...
随机推荐
- PPPoE图解
- js显示屏幕分辨率
<div style=" width:88%;margin:30px auto; color:blue;" id="div_html"> </ ...
- Hbase 命令小结
1.创建test,如果存在先删除 hbase(main)::> disable 'test' row(s) in 1.4250 seconds hbase(main)::> drop 't ...
- linux popen()与system()的区别
linux popen()与system()的区别 popen() 可以在调用程序和POSIX shell /usr/bin/sh 要执行的命令之间创建一个管道(请参阅sh-posix(1) ). p ...
- Hadoop2.2.0分布式安装配置详解[3/3]
测试启动 按照下面的每一步执行,执行完一定要看输出的信息,注意warn或error或fatal的情况.因为这都是可能是问题出现的地方.出现一个问题,不解决,可能就会影响接下来的测试.这才是真正的工作量 ...
- 开源配置管理平台-Apollo
Apollo(阿波罗)是携程框架部门研发的配置管理平台,能够集中化管理应用不同环境.不同集群的配置,配置修改后能够实时推送到应用端. Apollo官网地址
- JAVA代码实现多级树结构封装对象
树结构在开发中经常遇到.例如:部门.菜单.员工架构等等.下面用部门作为例子构造部门结构树 1.部门表:dept -- ---------------------------- -- Table str ...
- spring batch中用到的表
1,批量表的前缀:{prefix}来自类AbstractJdbcBatchMetadataDao中的变量DEFAULT_TABLE_PREFIX 2,{prefix}job_execution:存放j ...
- Docker镜像中的base镜像理解
base 镜像有两层含义: 不依赖其他镜像,从 scratch 构建. 其他镜像可以之为基础进行扩展. 所以,能称作 base 镜像的通常都是各种 Linux 发行版的 Docker 镜像,比如 Ub ...
- 小技巧 - CSS中:hover调试
在调试CSS的时候,我一般使用Chrome的F12开发者工具,或者FireFox的FireBug直接在元素上面修改好Style后,再写入到CSS中.前几天遇到一个问题就是a:hover,鼠标一移开效果 ...