转自:http://blog.csdn.net/junllee/article/details/7415732

内存映射

对于提供了MMU(存储管理器,辅助操作系统进行内存管理,提供虚实地址转换等硬件支持)的处理器而言,Linux提供了复杂的存储管理系统,使得进程所能访问的内存达到4GB。

  进程的4GB内存空间被人为的分为两个部分--用户空间与内核空间。用户空间地址分布从0到3GB(PAGE_OFFSET,在0x86中它等于0xC0000000),3GB到4GB为内核空间,如下图:

  内核空间中,从3G到vmalloc_start这段地址是物理内存映射区域(该区域中包含了内核镜像、物理页框表mem_map等等),比如我们使用的VMware虚拟系统内存是160M,那么3G~3G+160M这片内存就应该映射物理内存。在物理内存映射区之后,就是vmalloc区域。对于 160M的系统而言,vmalloc_start位置应在3G+160M附近(在物理内存映射区与vmalloc_start期间还存在一个8M的gap 来防止跃界),vmalloc_end的位置接近4G(最后位置系统会保留一片128k大小的区域用于专用页面映射),如下图:

  kmalloc和get_free_page申请的内存位于物理内存映射区域,而且在物理上也是连续的,它们与真实的物理地址只有一个固定的偏移,因此存在较简单的转换关系,virt_to_phys()可以实现内核虚拟地址转化为物理地址:

#define __pa(x) ((unsigned long)(x)-PAGE_OFFSET)

extern inline unsigned long virt_to_phys(volatile void * address)

{

 return __pa(address);

}

  上面转换过程是将虚拟地址减去3G(PAGE_OFFSET=0XC000000)。

  与之对应的函数为phys_to_virt(),将内核物理地址转化为虚拟地址:

#define __va(x) ((void *)((unsigned long)(x)+PAGE_OFFSET))

extern inline void * phys_to_virt(unsigned long address)

{

 return __va(address);

}

  virt_to_phys()和phys_to_virt()都定义在include\asm-i386\io.h中。

  而vmalloc申请的内存则位于vmalloc_start~vmalloc_end之间,与物理地址没有简单的转换关系,虽然在逻辑上它们也是连续的,但是在物理上它们不要求连续。

  我们用下面的程序来演示kmalloc、get_free_page和vmalloc的区别:

#include

#include

#include

MODULE_LICENSE("GPL");

unsigned char *pagemem;

unsigned char *kmallocmem;

unsigned char *vmallocmem;

int __init mem_module_init(void)

{

 //最好每次内存申请都检查申请是否成功

 //下面这段仅仅作为演示的代码没有检查

 pagemem = (unsigned char*)get_free_page(0);

 printk("pagemem addr=%x", pagemem);

 kmallocmem = (unsigned char*)kmalloc(100, 0);

 printk("kmallocmem addr=%x", kmallocmem);

 vmallocmem = (unsigned char*)vmalloc(1000000);

 printk("vmallocmem addr=%x", vmallocmem);

 return 0;

}

void __exit mem_module_exit(void)

{

 free_page(pagemem);

 kfree(kmallocmem);

 vfree(vmallocmem);

}

module_init(mem_module_init);

module_exit(mem_module_exit);

  我们的系统上有160MB的内存空间,运行一次上述程序,发现pagemem的地址在0xc7ArrayArray7000(约3G+121M)、kmallocmem 地址在0xcArraybc1380(约3G+155M)、vmallocmem的地址在0xcabeb000(约3G+171M)处,符合前文所述的内存布局。

  接下来,我们讨论Linux设备驱动究竟怎样访问外设的I/O端口(寄存器)。

  几乎每一种外设都是通过读写设备上的寄存器来进行的,通常包括控制寄存器、状态寄存器和数据寄存器三大类,外设的寄存器通常被连续地编址。根据CPU体系结构的不同,CPU对IO端口的编址方式有两种:

  (1)I/O映射方式(I/O-mapped)

  典型地,如X86处理器为外设专门实现了一个单独的地址空间,称为"I/O地址空间"或者"I/O端口空间",CPU通过专门的I/O指令(如X86的IN和OUT指令)来访问这一空间中的地址单元。

(2)内存映射方式(Memory-mapped)

  RISC指令系统的CPU(如ARM、PowerPC等)通常只实现一个物理地址空间,外设I/O端口成为内存的一部分。此时,CPU可以象访问一个内存单元那样访问外设I/O端口,而不需要设立专门的外设I/O指令。

  但是,这两者在硬件实现上的差异对于软件来说是完全透明的,驱动程序开发人员可以将内存映射方式的I/O端口和外设内存统一看作是"I/O内存"资源。

  一般来说,在系统运行时,外设的I/O内存资源的物理地址是已知的,由硬件的设计决定。但是CPU通常并没有为这些已知的外设I/O内存资源的物理地址预定义虚拟地址范围,驱动程序并不能直接通过物理地址访问I/O内存资源,而必须将它们映射到核心虚地址空间内(通过页表),然后才能根据映射所得到的核心虚地址范围,通过访内指令访问这些I/O内存资源。Linux在io.h头文件中声明了函数ioremap(),用来将I/O内存资源的物理地址映射到核心虚地址空间(3GB-4GB)中,原型如下:

void * ioremap(unsigned long phys_addr, unsigned long size, unsigned long flags);

  iounmap函数用于取消ioremap()所做的映射,原型如下:

void iounmap(void * addr);

  这两个函数都是实现在mm/ioremap.c文件中。

  在将I/O内存资源的物理地址映射成核心虚地址后,理论上讲我们就可以象读写RAM那样直接读写I/O内存资源了。为了保证驱动程序的跨平台的可移植性,我们应该使用Linux中特定的函数来访问I/O内存资源,而不应该通过指向核心虚地址的指针来访问。如在x86平台上,读写I/O的函数如下所示:

#define readb(addr) (*(volatile unsigned char *) __io_virt(addr))

#define readw(addr) (*(volatile unsigned short *) __io_virt(addr))

#define readl(addr) (*(volatile unsigned int *) __io_virt(addr))

#define writeb(b,addr) (*(volatile unsigned char *) __io_virt(addr) = (b))

#define writew(b,addr) (*(volatile unsigned short *) __io_virt(addr) = (b))

#define writel(b,addr) (*(volatile unsigned int *) __io_virt(addr) = (b))

#define memset_io(a,b,c) memset(__io_virt(a),(b),(c))

#define memcpy_fromio(a,b,c) memcpy((a),__io_virt(b),(c))

#define memcpy_toio(a,b,c) memcpy(__io_virt(a),(b),(c))

  最后,我们要特别强调驱动程序中mmap函数的实现方法。用mmap映射一个设备,意味着使用户空间的一段地址关联到设备内存上,这使得只要程序在分配的地址范围内进行读取或者写入,实际上就是对设备的访问。

  笔者在Linux源代码中进行包含"ioremap"文本的搜索,发现真正出现的ioremap的地方相当少。所以笔者追根索源地寻找I/O操作的物理地址转换到虚拟地址的真实所在,发现Linux有替代ioremap的语句,但是这个转换过程却是不可或缺的。

  譬如我们再次摘取S3C2410这个ARM芯片RTC(实时钟)驱动中的一小段:

static void get_rtc_time(int alm, struct rtc_time *rtc_tm)

{

 spin_lock_irq(&rtc_lock);

 if (alm == 1) {

  rtc_tm->tm_year = (unsigned char)ALMYEAR & Msk_RTCYEAR;

  rtc_tm->tm_mon = (unsigned char)ALMMON & Msk_RTCMON;

  rtc_tm->tm_mday = (unsigned char)ALMDAY & Msk_RTCDAY;

  rtc_tm->tm_hour = (unsigned char)ALMHOUR & Msk_RTCHOUR;

  rtc_tm->tm_min = (unsigned char)ALMMIN & Msk_RTCMIN;

  rtc_tm->tm_sec = (unsigned char)ALMSEC & Msk_RTCSEC;

 }

 else {

  read_rtc_bcd_time:

  rtc_tm->tm_year = (unsigned char)BCDYEAR & Msk_RTCYEAR;

  rtc_tm->tm_mon = (unsigned char)BCDMON & Msk_RTCMON;

  rtc_tm->tm_mday = (unsigned char)BCDDAY & Msk_RTCDAY;

  rtc_tm->tm_hour = (unsigned char)BCDHOUR & Msk_RTCHOUR;

  rtc_tm->tm_min = (unsigned char)BCDMIN & Msk_RTCMIN;

  rtc_tm->tm_sec = (unsigned char)BCDSEC & Msk_RTCSEC;

  if (rtc_tm->tm_sec == 0) {

   /* Re-read all BCD registers in case of BCDSEC is 0.

   See RTC section at the manual for more info. */

   goto read_rtc_bcd_time;

  }

 }

 spin_unlock_irq(&rtc_lock);

 BCD_TO_BIN(rtc_tm->tm_year);

 BCD_TO_BIN(rtc_tm->tm_mon);

 BCD_TO_BIN(rtc_tm->tm_mday);

 BCD_TO_BIN(rtc_tm->tm_hour);

 BCD_TO_BIN(rtc_tm->tm_min);

 BCD_TO_BIN(rtc_tm->tm_sec);

 /* The epoch of tm_year is 1Array00 */

 rtc_tm->tm_year += RTC_LEAP_YEAR - 1Array00;

 /* tm_mon starts at 0, but rtc month starts at 1 */

 rtc_tm->tm_mon--;

}

  I/O操作似乎就是对ALMYEAR、ALMMON、ALMDAY定义的寄存器进行操作,那这些宏究竟定义为什么呢?

#define ALMDAY bRTC(0x60)

#define ALMMON bRTC(0x64)

#define ALMYEAR bRTC(0x68)

  其中借助了宏bRTC,这个宏定义为:

#define bRTC(Nb) __REG(0x57000000 + (Nb))

  其中又借助了宏__REG,而__REG又定义为:

# define __REG(x) io_p2v(x)

  最后的io_p2v才是真正"玩"虚拟地址和物理地址转换的地方:

#define io_p2v(x) ((x) | 0xa0000000)

  与__REG对应的有个__PREG:

# define __PREG(x) io_v2p(x)

  与io_p2v对应的有个io_v2p:

#define io_v2p(x) ((x) & ~0xa0000000)

  可见有没有出现ioremap是次要的,关键问题是有无虚拟地址和物理地址的转换!

下面的程序在启动的时候保留一段内存,然后使用ioremap将它映射到内核虚拟空间,同时又用remap_page_range映射到用户虚拟空间,这样一来,内核和用户都能访问。如果在内核虚拟地址将这段内存初始化串"abcd",那么在用户虚拟地址能够读出来:

/************mmap_ioremap.c**************/

#include

#include

#include

#include

#include  /* for mem_map_(un)reserve */

#include  /* for virt_to_phys */

#include  /* for kmalloc and kfree */

MODULE_PARM(mem_start, "i");

MODULE_PARM(mem_size, "i");

static int mem_start = 101, mem_size = 10;

static char *reserve_virt_addr;

static int major;

int mmapdrv_open(struct inode *inode, struct file *file);

int mmapdrv_release(struct inode *inode, struct file *file);

int mmapdrv_mmap(struct file *file, struct vm_area_struct *vma);

static struct file_operations mmapdrv_fops =

{

 owner: THIS_MODULE, mmap: mmapdrv_mmap, open: mmapdrv_open, release:

 mmapdrv_release,

};

int init_module(void)

{

 if ((major = register_chrdev(0, "mmapdrv", &mmapdrv_fops)) vm_pgoff vm_end - vma->vm_start;

 if (size > mem_size *1024 * 1024)

 {

  printk("size too big\n");

  return ( - ENXIO);

 }

 offset = offset + mem_start * 1024 * 1024;

 /* we do not want to have this area swapped out, lock it */

 vma->vm_flags |= VM_LOCKED;

 if (remap_page_range(vma, vma->vm_start, offset, size, PAGE_SHARED))

 {

  printk("remap page range failed\n");

  return - ENXIO;

 }

 return (0);

}

  remap_page_range函数的功能是构造用于映射一段物理地址的新页表,实现了内核空间与用户空间的映射,其原型如下:

int remap_page_range(vma_area_struct *vma, unsigned long from, unsigned long to, unsigned long size, pgprot_tprot);

  使用mmap最典型的例子是显示卡的驱动,将显存空间直接从内核映射到用户空间将可提供显存的读写效率。

ioremap 与 mmap【转】的更多相关文章

  1. linux 内存映射-ioremap和mmap函数

    最近开始学习Linux驱动程序,将内存映射和ioremap,mmap函数相关资料进行了整理 一,内存映射  对于提供了MMU(存储管理器,辅助操作系统进行内存管理,提供虚实地址转换等硬件支持)的处理器 ...

  2. linux内存操作--ioremap和mmap学习笔记

    最近做一些相关的视频输出,对于保留framebuffer内存使用情况不是很清楚,现在找了一些资料整理出,准备使用.if (希望看到使用)  goto   用法: 对于一个系统来讲,会有非常多的外设,那 ...

  3. linux内存操作--ioremap和mmap

    最近在做视频输出相关的东西,对于预留给framebuffer的内存使用不是很清楚,现在找到一些资料整理一下,以备使用.if (想看使用方法)  goto   使用方法: 对于一个系统来讲,会有很多的外 ...

  4. 内核模块module传参

    linux 2.6允许用户insmod的时候往内核模块里面传递参数,它主要使用module_param宏定义来实现这一功能. 参数应用 module_param(name, type, perm); ...

  5. 浅谈mmap()和ioremap()的用法与区别

    一.mmap()mmap()函数是用来将设备内存线性地址映射到用户地址空间.(1)首先映射基地址,再通过偏移地址寻址:(2)unsigned char *map_cru_base=(unsigned ...

  6. 内存管理,goto的使用,内存的申请和释放,mmap,ioremap

    1.内存管理 (将物理内存映射到内核空间(3G~4G)并使用)  深入内核: 伙伴系统 1.1基本概念    1)linux内核管理内存是以物理内存页为单位       一个物理内存页通常为4KB   ...

  7. mmap DMA【转】

    转自:http://blog.csdn.net/lihaoweiv/article/details/6275241 第 13 章  mmap 和 DMA 本章将深入探讨 Linux 内存管理部分,并强 ...

  8. 内存映射MMAP和DMA【转】

    转自:http://blog.csdn.net/zhoudengqing/article/details/41654293 版权声明:本文为博主原创文章,未经博主允许不得转载. 这一章介绍Linux内 ...

  9. Linux 下操作GPIO(两种方法,驱动和mmap)(转载)

    目前我所知道的在Linux下操作GPIO有两种方法: 1.编写驱动,这当然要熟悉Linux下驱动的编写方法和技巧,在驱动里可以使用ioremap函数获得GPIO物理基地址指针,然后使用这个指针根据io ...

随机推荐

  1. 自学Aruba2.1-Aruba Web UI --Dashbord面板介绍

    点击返回:自学Aruba之路 自学Aruba2.1-Aruba Web UI --Dashbord面板介绍 本文所有设计的的controller版本信息如下:  Aruba7205 V6.4.4.16 ...

  2. 【BZOJ2434】【NOI2011】阿狸的打字机(AC自动机,树状数组)

    [BZOJ2434]阿狸的打字机(AC自动机,树状数组) 先写个暴力: 每次打印出字符串后,就插入到\(Trie\)树中 搞完后直接搭\(AC\)自动机 看一看匹配是怎么样的: 每次沿着\(AC\)自 ...

  3. 【AGC016E】Poor Turkeys

    Description 有\(n\)(\(1 \le n \le 400\))只鸡,接下来按顺序进行\(m\)(\(1 \le m \le 10^5\))次操作.每次操作涉及两只鸡,如果都存在则随意拿 ...

  4. Prometheus-operator架构详解

    Prometheus是一个开源的系统监视和警报工具.一款非常优秀的监控工具.监控方案:Prometheus 提供了数据搜集.存储.处理.可视化和告警一套完整的解决方案. Prometheus的关键特性 ...

  5. (转)使用 Spring缓存抽象 支持 EhCache 和 Redis 混合部署

    背景:最近项目组在开发本地缓存,其中用到了redis和ehcache,但是在使用注解过程中发现两者会出现冲突,这里给出解决两者冲突的具体方案. spring-ehcache.xml配置: <?x ...

  6. sys模块(二十一)

    用于提供对Python解释器相关的操作: sys.argv 命令行参数List,第一个元素是程序本身路径 sys.exit(n) 退出程序,正常退出时exit(0) sys.version 获取Pyt ...

  7. 初见mobX

    先看如下的代码 const {observable}= mobox; const {observer}=mobxReact; const {Component}=React; const appSta ...

  8. ADO.NET入门教程(五) 细说数据库连接池

    摘要 今天我要讲的是数据库连接池.说实话,我表示鸭梨很大.因为相比其他章节来说,连接池相对来说难理解一点.我要用最通俗的语句给大家讲明白,讲透彻却也不是一件很容易的事.但是,连接池又是非常重要的知识点 ...

  9. Kubernetes Ingress管理

    目录 Ingress介绍 1.Pod漂移问题 2.端口管理问题 3.域名分配及动态更新问题 Nginx Ingress配置 1.部署默认后端 2.部署Ingress Controller 3.部署In ...

  10. conda常用命令总结

    conda 一些背景历史以及如何安装这里就不说了,因为实在是漫天都在飞,随便都能找到相关的资料.我这里只是将平时常用到的 Conda 命令进行汇总,以备不时之需,因为我也是一个忘性极大的人,实在是记不 ...