2018-09-15 10:23:44

一、Largest Rectangle in Histogram

在求解最大的矩形面积之前,我们先讨论一条最大直方图面积的问题。

问题描述:

问题求解:

解法一、朴素解法,O(n ^ 2)。

解决的思路就是遍历一遍,如果当前的数比后一个数要小,那么当前的额数字肯定不可能是最大面积的右边界,遍历下一个数;

如果当前数比后一个大,那么假设当前的为右边界,向左进行遍历,计算面积最大值。

    public int largestRectangleArea(int[] heights) {
if (heights.length == 0) return 0;
int res = 0;
for (int i = 0; i < heights.length; i++) {
if (i == heights.length - 1 || heights[i] > heights[i + 1]) {
int minHeight = heights[i];
for (int j = i; j >= 0; j--) {
minHeight = Math.min(heights[j], minHeight);
res = Math.max(res, minHeight * (i - j + 1));
}
}
}
return res;
}

解法二、使用堆栈,时间复杂度O(n)。

如何更快的解决这个问题呢?这里需要从另一个角度来考虑这个问题,其实解法一也是一种类似DP的解法,它的核心思路就是固定最后一个数,来获得以当前数为结尾的最大矩形面积。其实还有另一个角度来思考,就是以每个数作为高度能获得的最大面积是多少?其实这个问题就是需要找当前数左右第一个比其低的数,然后就可以得出以当前数字为高度的最大矩形面积,最后我们只需要遍历比较一遍就可以得到最大的结果。

    public int largestRectangleArea(int[] nums) {
int n = nums.length;
int[] l = new int[n];
int[] r = new int[n];
Stack<Integer> stack = new Stack<>();
for (int i = 0; i < nums.length; i++) {
while (!stack.isEmpty() && nums[stack.peek()] >= nums[i]) stack.pop();
l[i] = stack.isEmpty() ? 0 : stack.peek() + 1;
stack.push(i);
}
stack.clear();
for (int i = nums.length - 1; i >= 0; i--) {
while (!stack.isEmpty() && nums[stack.peek()] >= nums[i]) stack.pop();
r[i] = stack.isEmpty() ? nums.length - 1 : stack.peek() - 1;
stack.push(i);
}
int res = 0;
for (int i = 0; i < n; i++) {
res = Math.max(res, nums[i] * (r[i] - l[i] + 1));
}
return res;
}

二、Maximal Rectangle

问题描述:

问题求解:

有个上一个问题的铺垫,这个问题就很好解决了,针对每一行,可以先求出其高度,然后再对每一行求最大最方图的面积,取max即可。

使用一个height的二维数组进行高度的保存,可以将时间复杂度降到O(mn)

    public int maximalRectangle(char[][] matrix) {
if (matrix.length == 0 || matrix[0].length == 0) return 0;
int m = matrix.length;
int n = matrix[0].length;
int[][] height = new int[m][n];
for (int i = 0; i < n; i++) if (matrix[0][i] == '1') height[0][i] = 1;
for (int i = 1; i < m; i++) {
for (int j = 0;j < n; j++) {
if (matrix[i][j] == '0') height[i][j] = 0;
else height[i][j] = 1 + height[i - 1][j];
}
}
int res = 0;
for (int i = 0; i < m; i++) {
res = Math.max(res, helper(height[i]));
}
return res;
} private int helper(int[] nums) {
int n = nums.length;
int[] l = new int[n];
int[] r = new int[n];
Stack<Integer> stack = new Stack<>();
for (int i = 0; i < nums.length; i++) {
while (!stack.isEmpty() && nums[stack.peek()] >= nums[i]) stack.pop();
l[i] = stack.isEmpty() ? 0 : stack.peek() + 1;
stack.push(i);
}
stack.clear();
for (int i = nums.length - 1; i >= 0; i--) {
while (!stack.isEmpty() && nums[stack.peek()] >= nums[i]) stack.pop();
r[i] = stack.isEmpty() ? nums.length - 1 : stack.peek() - 1;
stack.push(i);
}
int res = 0;
for (int i = 0; i < n; i++) {
res = Math.max(res, nums[i] * (r[i] - l[i] + 1));
}
return res;
}

最大的矩形面积 Maximal Rectangle的更多相关文章

  1. LeetCode 84--柱状图中最大的矩形( Largest Rectangle in Histogram) 85--最大矩形(Maximal Rectangle)

    84题和85五题 基本是一样的,先说84题 84--柱状图中最大的矩形( Largest Rectangle in Histogram) 思路很简单,通过循环,分别判断第 i 个柱子能够延展的长度le ...

  2. [Swift]LeetCode850. 矩形面积 II | Rectangle Area II

    We are given a list of (axis-aligned) rectangles.  Each rectangle[i] = [x1, y1, x2, y2] , where (x1, ...

  3. LeetCode 223. 矩形面积(Rectangle Area)

    223. 矩形面积 223. Rectangle Area 题目描述 在二维平面上计算出两个由直线构成的矩形重叠后形成的总面积. 每个矩形由其左下顶点和右上顶点坐标表示,如图所示. LeetCode2 ...

  4. 求解最大矩形面积 — leetcode 85. Maximal Rectangle

    之前切了道求解最大正方形的题,题解猛戳 这里.这道题 Maximal Rectangle 题意与之类似,但是解法完全不一样. 先来看这道题 Largest Rectangle in Histogram ...

  5. [LeetCode] Maximal Rectangle 最大矩形

    Given a 2D binary matrix filled with 0's and 1's, find the largest rectangle containing all ones and ...

  6. [LeetCode] 85. Maximal Rectangle 最大矩形

    Given a 2D binary matrix filled with 0's and 1's, find the largest rectangle containing only 1's and ...

  7. [LeetCode] Rectangle Area 矩形面积

    Find the total area covered by two rectilinear rectangles in a2D plane. Each rectangle is defined by ...

  8. Largest Rectangle in a Histogram(最大矩形面积,动态规划思想)

    Largest Rectangle in a Histogram Time Limit: 2000/1000 MS (Java/Others)    Memory Limit: 65536/32768 ...

  9. [Swift]LeetCode223. 矩形面积 | Rectangle Area

    Find the total area covered by two rectilinear rectangles in a 2D plane. Each rectangle is defined b ...

随机推荐

  1. 【题解】 Luogu P4145 上帝造题的七分钟2 / 花神游历各国

    原题传送门 这道题实际和GSS4是一样的,只是输入方式有点区别 GSS4传送门 这道题暴力就能过qaq(这里暴力指线段树) 数据比较水 开方修改在线段树中枚举叶节点sqrt 查询区间和线段树基本操作 ...

  2. python简说(十五)MD5加密

    def my_md5(s): news = str(s).encode() m = hashlib.md5(news) return m.hexdigest()

  3. tp5 本地安装和调试的问题

    安装的时候用官方下载的包或者用composer指定版本号,不要用git,会安装最新的包. 本地配置域名的时候出错,要不就是500要不就是找不到文件,原因是目录路径里的反斜杆加字母t被转义了,改成正斜杠 ...

  4. 树之105 Construct Binary Tree from Preorder and Inorder Traversal

    题目链接:https://leetcode-cn.com/problems/construct-binary-tree-from-preorder-and-inorder-traversal/ 参考链 ...

  5. JavaScript中数组中的方法:push()、pop()、shift()、unshift()、slice()、splice()、reverse()、join()、split()、concat()、indexOf()、forEach()、map()、

      1.创建数组的几种方法 //a).通过new来创建数组,new可以省略 var arr=new Array(); var arr=Array(); //b). .通过new来创建数组,并且赋值 v ...

  6. HDU 3506 Monkey Party(区间DP)题解

    题意:有n个石堆排成环,每次能合并相邻的两堆石头变成新石堆,代价为新石堆石子数,问最少的总代价是多少 思路:先看没排成环之前怎么做:用dp[i][j]表示合并i到j所需的最小代价,那么dp[i][j] ...

  7. 【做题】codechefCOUNTARI——分块FFT

    记本题数组长度为\(n\),权值大小为\(m\). 首先,暴力显然是\(O(n^2)\)的. 先瞄一眼tag,然后发现这是FFT. 显然,问题的关键在于要满足i,j,k之间的位置关系.于是考虑分治FF ...

  8. 题解——CF Manthan, Codefest 18 (rated, Div. 1 + Div. 2) T3(贪心)

    是一道水题 虽然看起来像是DP,但其实是贪心 扫一遍就A了 QwQ #include <cstdio> #include <algorithm> #include <cs ...

  9. 常用linux,DOS命令——持续更新

    cd 文件夹名 进入某个文件夹 cd ../ 退出该级目录进入上一级 cd ../../ 退出该级目录进入上上级 cd ../../demo 退出该级目录进入上上级的目录 d: 回车 进入d盘 ls ...

  10. [JavaScript] - 判断时间是否是当天

    https://www.codewars.com/kata/is-the-date-today/train/javascript function isToday(date) { return new ...