随便代换一下把它变成多项式乘法,及$C[T]=\sum_{i=0}^{T}A[i]×B[T-i]$这种形式,然后FFT求一下就可以啦

#include<cmath>
#include<cstdio>
#include<cstring>
#include<algorithm>
#define read(x) x=getint()
using namespace std;
const int N = 400003;
const double Pi = acos(- 1.0);
int getint() {
int k = 0, fh = 1; char c = getchar();
for(; c < '0' || c > '9'; c = getchar())
if (c == '-') fh = -1;
for(; c >= '0' && c <= '9'; c = getchar())
k = k * 10 + c - '0';
return k * fh;
}
struct cp {
double r, i;
cp (double _r = 0.0, double _i = 0.0) : r(_r), i(_i) {}
cp operator + (const cp &x) {return cp(r + x.r, i + x.i);}
cp operator - (const cp &x) {return cp(r - x.r, i - x.i);}
cp operator * (const cp &x) {return cp(r * x.r - i * x.i, r * x.i + i * x.r);}
};
cp A[N], u, t;
int rev[N];
void DFT(cp *a, int n, int flag) {
for(int i = 0; i < n; ++i) A[rev[i]] = a[i];
for(int i = 0; i < n; ++i) a[i] = A[i];
for(int m = 2; m <= n; m <<= 1) {
cp wn(cos(2.0 * Pi / m * flag), sin(2.0 * Pi / m * flag));
int mid = m >> 1;
for(int i = 0; i < n; i += m) {
cp w(1.0);
for(int j = 0; j < mid; ++j) {
u = a[i + j], t = a[i + j + mid] * w;
a[i + j] = u + t;
a[i + j + mid] = u - t;
w = w * wn;
}
}
}
if (flag == -1)
for(int i = 0; i < n; ++i)
a[i].r /= n;
}
void init(int &n) {
int k = 1, ret, L = 0;
for(; k < n; k <<= 1, ++L);
n = k;
for(int i = 0; i < n; ++i) {
k = i; ret = 0;
for(int j = 0; j < L; ++j)
ret <<= 1, ret |= k & 1, k >>= 1;
rev[i] = ret;
}
}
void FFT(int *a, int *b, int *c, int la, int lb) {
static cp x[N], y[N];
int len = la + lb - 1;
init(len);
for(int i = 0; i < len; ++i)
x[i].r = a[i], x[i].i = 0;
for(int i = 0; i < len; ++i)
y[i].r = b[i], y[i].i = 0;
DFT(x, len, 1); DFT(y, len, 1);
for(int i = 0; i < len; ++i)
x[i] = x[i] * y[i];
DFT(x, len, -1);
for(int i = 0; i < len; ++i)
c[i] = (int) (x[i].r + 0.5);
}
int x[N], y[N], a[N], n;
int main() {
read(n);
for(int i = 0; i < n; ++i)
read(x[i]), read(y[i]);
for(int i = 0; i < n; ++i)
a[i] = x[n - i - 1];
FFT(y, a, x, n, n);
for(int i = 0; i < n; ++i)
a[i] = x[n - i - 1];
for(int i = 0; i < n; ++i)
printf("%d\n", a[i]);
return 0;
}

233

【BZOJ 2194】快速傅立叶之二的更多相关文章

  1. bzoj 2194: 快速傅立叶之二 -- FFT

    2194: 快速傅立叶之二 Time Limit: 10 Sec  Memory Limit: 259 MB Description 请计算C[k]=sigma(a[i]*b[i-k]) 其中 k & ...

  2. bzoj 2194 快速傅立叶之二 —— FFT

    题目:https://www.lydsy.com/JudgeOnline/problem.php?id=2194 如果把 a 序列翻转,则卷积得到的是 c[n-i],再把得到的 c 序列翻转即可. 代 ...

  3. [BZOJ]2194: 快速傅立叶之二

    题目大意:给定序列a,b,求序列c满足c[k]=sigma(a[i]*b[i-k]) (k<=i<n).(n<=10^5) 思路:观察发现就是普通的卷积反一反(翻转ab其中一个后做卷 ...

  4. 【刷题】BZOJ 2194 快速傅立叶之二

    Description 请计算C[k]=sigma(a[i]*b[i-k]) 其中 k < = i < n ,并且有 n < = 10 ^ 5. a,b中的元素均为小于等于100的非 ...

  5. BZOJ.2194.快速傅立叶之二(FFT 卷积)

    题目链接 \(Descripiton\) 给定\(A[\ ],B[\ ]\),求\[C[k]=\sum_{i=k}^{n-1}A[i]*B[i-k]\ (0\leq k<n)\] \(Solut ...

  6. BZOJ 2194 快速傅立叶之二 ——FFT

    [题目分析] 咦,这不是卷积裸题. 敲敲敲,结果样例也没过. 看看看,卧槽i和k怎么反了. 艹艹艹,把B数组取个反. 靠靠靠,怎么全是零. 算算算,最终的取值范围算错了. 交交交,总算是A掉了. [代 ...

  7. bzoj 2194: 快速傅立叶之二【NTT】

    看别的blog好像我用了比较麻烦的方法-- (以下的n都--过 \[ c[i]=\sum_{j=i}^{n}a[i]*b[j-i] \] 设j=i+j \[ c[i]=\sum_{j=0}^{n-i} ...

  8. BZOJ 2194 快速傅立叶变换之二 | FFT

    BZOJ 2194 快速傅立叶变换之二 题意 给出两个长为\(n\)的数组\(a\)和\(b\),\(c_k = \sum_{i = k}^{n - 1} a[i] * b[i - k]\). 题解 ...

  9. 【BZOJ 2194】2194: 快速傅立叶之二(FFT)

    2194: 快速傅立叶之二 Time Limit: 10 Sec  Memory Limit: 259 MBSubmit: 1273  Solved: 745 Description 请计算C[k]= ...

  10. 【BZOJ】2194: 快速傅立叶之二

    http://www.lydsy.com/JudgeOnline/problem.php?id=2194 题意:求$c[k]=\sum_{k<=i<n} a[i]b[i-k], n< ...

随机推荐

  1. 为opencv贡献代码

    本文记录本人从发现bug,提交bug,到修复bug的过程.下面enjoy: 1.发现bug 由于项目需要,开发了一个视频检测demo,类似于扫一扫二维码的程序,不过不是这个程序不是扫二维码.具体实现参 ...

  2. UESTC 33 Area --凸包面积

    题意: 求一条直线分凸包两边的面积. 解法: 因为题意会说一定穿过,那么不会有直线与某条边重合的情况.我们只要找到一个直线分成的凸包即可,另一个的面积等于总面积减去那个的面积. 怎么得到分成的一个凸包 ...

  3. Android 之窗口小部件详解--App Widget

    Android 之窗口小部件详解--App Widget  版本号 说明 作者 日期  1.0  添加App Widge介绍和示例  Sky Wang 2013/06/27        1 App ...

  4. java(搜索不区分大小写)

    ref.put("myfield", Pattern.compile(".*myValue.*" , Pattern.CASE_INSENSITIVE));

  5. LazyInitializationException: could not initialize proxy no session

    这完全是框架设计者的锅,讲道理  无论是SSH SSM都太重了, Hibernate几乎把SQL完全封装了一遍,简单的一对多关系,如果开启LazyLoad 这样实体类会被代理,直到访问这个多方实体的属 ...

  6. Centos6.2 下 vncserver 的安装

    好久没用vnc了, 把今天装的过程记录一下, 这是一个从网上下载的标准Centos6.2 虚机镜像, 已经带了桌面. 默认的用户是root和tom, 口令都是tomtom. 因为ssh服务没起来, 简 ...

  7. Linux commands frequently used

    touch <filename>.sh gedit <filename>.sh bash <filename>.sh & ps auxw|grep < ...

  8. sqlserver 通用分页存储过程

    来源:http://www.jb51.net/article/19936.htm CREATE PROCEDURE commonPagination ), --要显示的列名,用逗号隔开 ), --要查 ...

  9. Android属性(property)机制

    1. 属性简介 Android里有很多属性(property),每个属性都有一个名称和值,他们都是字符串格式.这些属性定义了Android系统的一些公共系统属性.比如: [dalvik.vm.dexo ...

  10. IntelliJ IDEA 13试用手记(附详细截图)

    从去年开始转java以来,一直在寻找一款趁手的兵器,eclipse虽然是很多java程序员的首选,但是我发现一旦安装了一些插件,workspace中的项目达到数10个以后,经常崩溃,实在影响编程的心情 ...