虚拟机下的Ubuntu16.04+caffe+onlycup

官网的step很重要,要跟着官网,的步骤来:http://caffe.berkeleyvision.org/installation.html

然后对照:http://blog.csdn.net/firethelife/article/details/51926754

======================【关于注意和报错】===================

-------------------------------------------------------------------------------------

caffe下make 的时候遇到的一些找不到ldhf5之类的错误,则要安装libhdf5,如下解决:

sudo apt-get install libhdf5-dev

-------------------------------------------------------------------------------------

【http://www.linuxidc.com/Linux/2016-07/132860.htm】

首先安装必要的库,有的依赖库我是已经安装过的,具体安装的先后关系已经忘了。如果出现有些依赖关系不满足的错误,可以再安装库:

$ sudo apt-get install build-essential cmake git libgtk2.0-dev pkg-config libavcodec-dev libavformat-dev libswscale-dev    # 必要的基本库

根据上面的链接下载OpenCV3.1.0版本,并进行解压,解压之后进入安装文件目录:

$ cd opencv-3.1.0
$ mkdir build #创建build文件夹
$ cd opencv-3.1.0/build
$ cmake -D CMAKE_BUILD_TYPE=Release -D CMAKE_INSTALL_PREFIX=/usr/local ..

----------------------------------------------------------------------------------

OpenBLAS:

The default directory is /opt/OpenBLAS     /*这个是默认安装路径*/

$ git clone https://github.com/xianyi/OpenBLAS.git

【http://www.linuxdiyf.com/linux/15610.html】

则需要安装,安装的步骤如下:

(1)git clone https://github.com/xianyi/OpenBLAS.git

(2)cd OpenBLAS

(3)make FC=gfortran (如果没有安装gfortran,执行sudo apt-get install gfortran)

(4) make install (将OpenBLAS安装到/opt下)

装好后,对应 caffe下Makefile.config修改如下:

# BLAS choice:
# atlas for ATLAS (default)
# mkl for MKL
# open for OpenBlas
BLAS := open
# Custom (MKL/ATLAS/OpenBLAS) include and lib directories.
# Leave commented to accept the defaults for your choice of BLAS
# (which should work)!
BLAS_INCLUDE := /opt/OpenBLAS/include
BLAS_LIB := /opt/OpenBLAS/lib

-----------------------------------------------------------------------------------

caffe,,,make 的时候会发生一些错误,查看caffe下Makefile.config,修改:

# Whatever else you find you need goes here.
INCLUDE_DIRS := $(PYTHON_INCLUDE) /usr/local/include /usr/include/hdf5/serial/
LIBRARY_DIRS := $(PYTHON_LIB) /usr/local/lib /usr/lib /usr/lib/x86_64-linux-gnu/hdf5/serial/

其中:/usr/include/hdf5/serial/是hdf5的位置。

---------------------------------------------------------------------------------------

【http://blog.csdn.net/lanxuecc/article/details/51997919】

runtest时会报一个错::build_release/tools/caffe: error while loading shared libraries: libopenblas.so.0: cannot open shared object file: No such file or directory,解决方法:在/usr/lib/下建立一个 软链接将 libopenblas.so.0指向/openbls安装目录/lib/ libopenblas.so.0

-----\

在/usr/lib/下建立一个 软链接将 libopenblas.so.0指向/openbls安装目录/lib/ libopenblas.so.0
ln -s /opt/OpenBLAS/lib/libopenblas.so.0 /usr/lib/libopenblas.so.0

------------------------------------------------------------------------------------

============= caffe下Makefile.config最终的样子如下==================

## Refer to http://caffe.berkeleyvision.org/installation.html
# Contributions simplifying and improving our build system are welcome!

# cuDNN acceleration switch (uncomment to build with cuDNN).
# USE_CUDNN := 1

# CPU-only switch (uncomment to build without GPU support).
CPU_ONLY := 1

# uncomment to disable IO dependencies and corresponding data layers
# USE_OPENCV := 0
# USE_LEVELDB := 0
# USE_LMDB := 0

# uncomment to allow MDB_NOLOCK when reading LMDB files (only if necessary)
# You should not set this flag if you will be reading LMDBs with any
# possibility of simultaneous read and write
# ALLOW_LMDB_NOLOCK := 1

# Uncomment if you're using OpenCV 3
OPENCV_VERSION := 3

# To customize your choice of compiler, uncomment and set the following.
# N.B. the default for Linux is g++ and the default for OSX is clang++
# CUSTOM_CXX := g++

# CUDA directory contains bin/ and lib/ directories that we need.
CUDA_DIR := /usr/local/cuda
# On Ubuntu 14.04, if cuda tools are installed via
# "sudo apt-get install nvidia-cuda-toolkit" then use this instead:
# CUDA_DIR := /usr

# CUDA architecture setting: going with all of them.
# For CUDA < 6.0, comment the *_50 lines for compatibility.
CUDA_ARCH := -gencode arch=compute_20,code=sm_20 \
-gencode arch=compute_20,code=sm_21 \
-gencode arch=compute_30,code=sm_30 \
-gencode arch=compute_35,code=sm_35 \
-gencode arch=compute_50,code=sm_50 \
-gencode arch=compute_50,code=compute_50

# BLAS choice:
# atlas for ATLAS (default)
# mkl for MKL
# open for OpenBlas
BLAS := open
# Custom (MKL/ATLAS/OpenBLAS) include and lib directories.
# Leave commented to accept the defaults for your choice of BLAS
# (which should work)!
BLAS_INCLUDE := /opt/OpenBLAS/include
BLAS_LIB := /opt/OpenBLAS/lib

# Homebrew puts openblas in a directory that is not on the standard search path
# BLAS_INCLUDE := $(shell brew --prefix openblas)/include
# BLAS_LIB := $(shell brew --prefix openblas)/lib

# This is required only if you will compile the matlab interface.
# MATLAB directory should contain the mex binary in /bin.
# MATLAB_DIR := /usr/local
# MATLAB_DIR := /Applications/MATLAB_R2012b.app

# NOTE: this is required only if you will compile the python interface.
# We need to be able to find Python.h and numpy/arrayobject.h.
PYTHON_INCLUDE := /usr/include/python2.7 \
/usr/lib/python2.7/dist-packages/numpy/core/include
# Anaconda Python distribution is quite popular. Include path:
# Verify anaconda location, sometimes it's in root.
ANACONDA_HOME := $(HOME)/anaconda2
PYTHON_INCLUDE := $(ANACONDA_HOME)/include \
$(ANACONDA_HOME)/include/python2.7 \
$(ANACONDA_HOME)/lib/python2.7/site-packages/numpy/core/include \

# Uncomment to use Python 3 (default is Python 2)
# PYTHON_LIBRARIES := boost_python3 python3.5m
# PYTHON_INCLUDE := /usr/include/python3.5m \
# /usr/lib/python3.5/dist-packages/numpy/core/include

# We need to be able to find libpythonX.X.so or .dylib.
PYTHON_LIB := /usr/lib
#PYTHON_LIB := $(ANACONDA_HOME)/lib

# Homebrew installs numpy in a non standard path (keg only)
# PYTHON_INCLUDE += $(dir $(shell python -c 'import numpy.core; print(numpy.core.__file__)'))/include
# PYTHON_LIB += $(shell brew --prefix numpy)/lib

# Uncomment to support layers written in Python (will link against Python libs)
# WITH_PYTHON_LAYER := 1

# Whatever else you find you need goes here.
INCLUDE_DIRS := $(PYTHON_INCLUDE) /usr/local/include /usr/include/hdf5/serial/
LIBRARY_DIRS := $(PYTHON_LIB) /usr/local/lib /usr/lib /usr/lib/x86_64-linux-gnu/hdf5/serial/

# If Homebrew is installed at a non standard location (for example your home directory) and you use it for general dependencies
# INCLUDE_DIRS += $(shell brew --prefix)/include
# LIBRARY_DIRS += $(shell brew --prefix)/lib

# Uncomment to use `pkg-config` to specify OpenCV library paths.
# (Usually not necessary -- OpenCV libraries are normally installed in one of the above $LIBRARY_DIRS.)
# USE_PKG_CONFIG := 1

# N.B. both build and distribute dirs are cleared on `make clean`
BUILD_DIR := build
DISTRIBUTE_DIR := distribute

# Uncomment for debugging. Does not work on OSX due to https://github.com/BVLC/caffe/issues/171
# DEBUG := 1

# The ID of the GPU that 'make runtest' will use to run unit tests.
TEST_GPUID := 0

# enable pretty build (comment to see full commands)
Q ?= @

-----------------------------------------------------------------------------------------------

感想:在Windows和虚拟机Ubuntu16下都搭好了环境了,好想大声喊一句:鬼知道我这四天经历了什么。。。。幸好你没有放弃!!!

花了2天的时间明白:cuda是英伟达的显卡,而我的机子是【计算机右键-属性-适配器-(最后一项)显示适配器:AMD】AMD的,所以装了cuda进不去Ubuntu的图形界面,在这里开启了各种重装的坎坷路程。。。。整整话了两天啊。。。我的妈呀!!!幸好,坚持了下来!!:)加油。

虚拟机Ubuntu16,caffe环境搭建的更多相关文章

  1. 基于VGGnet的人脸识别系统-ubuntu 系统下的Caffe环境搭建(CPU)

    对于caffe的系统一般使用linux系统,当然也有windows版本的caffe,不过如果你一开始使用了windows下面的caffe,后面学习的过程中,会经常遇到各种错误,网上下载的一些源码.模型 ...

  2. 从头来之【图解针对虚拟机iOS开发环境搭建】

    1.下载Mac OSX10.9. 点击下载 2.下载VMware Workstation 10,点击下载,网页中包含序列号.安装VM. 3.VM10-MacOS补丁.用于创建苹果虚拟机. 安装VM就不 ...

  3. 虚拟机IOS开发环境搭建教程

    来源:http://www.cnblogs.com/xiaoyaoju/archive/2013/05/21/3091171.html 安装条件: 硬件:一台拥有支持虚拟技术的64位双核处理器和2GB ...

  4. 从头来之【图解针对虚拟机iOS开发环境搭建】 (转)

    1.下载Mac OSX10.9. 点击下载 2.下载VMware Workstation 10,点击下载,网页中包含序列号.安装VM. 3.VM10-MacOS补丁.用于创建苹果虚拟机. 安装VM就不 ...

  5. 【神经网络与深度学习】Win10+VS2015 caffe环境搭建(极其详细)

    caffe是好用,可是配置其环境实在是太痛苦了,依赖的库很多不说,在VS上编译还各种报错,你能想象那种被一百多个红色提示所笼罩的恐惧.  且网上很多教程是VS2013环境下编译的,问人很多也说让我把1 ...

  6. Ubuntu16+pinpoint环境搭建

    最近研究了pinpoint,稍后放上环境搭建教程,建议想学习搭建的同学记得参考pinpointGitHub

  7. windows10下基于docker的bvlc/caffe环境搭建与使用

    docker 安装参见docker官网,当cmd出现以下图像时安装正确; 然后进行bvlc/caffe环境创建,有两种,一种是直接pull github的bvlc,一种是本地创建image,直接使用g ...

  8. 机器学习caffe环境搭建——redhat7.1和caffe的python接口编译

    相信看这篇文章的都知道caffe是干嘛的了,无非就是深度学习.神经网络.计算机视觉.人工智能这些,这个我就不多介绍了,下面说说我的安装过程即遇到的问题,当然还有解决方法. 说下我的环境:1>虚拟 ...

  9. VMware 安装centOS6.4虚拟机以及基础环境搭建

随机推荐

  1. HashMap其实就那么一回事儿之源码浅析

    上篇文章<LinkedList其实就那么一回事儿之源码分析>介绍了LinkedList, 本次将为大家介绍HashMap. 在介绍HashMap之前,为了方便更清楚地理解源码,先大致说说H ...

  2. 动态SQL基础

    动态SQL就是我们可以动态构造SQL代码,然后再执行这个批处理.有两种执行动态SQL的方法,分别是EXEC命令和sp_executesql存储过程.下面是示例代码. USE TSQLFundament ...

  3. 连接到CentOS(Linux)服务器ssh、mysql缓慢

    现象: 服务器163与服务器164在同一机柜,双绞线直接连接,从办公室或者服务器163去连机服务器164的ssh.mysql均缓慢,让机房人员查了,无果.而164却正常. 最后发现两个机器/etc/r ...

  4. js从后台无法取值问题

    前台代码 <script type="text/javascript"> $(function () { var chart; $(document).ready(fu ...

  5. ”isEqual“ ”isEqalToString“ 和“==”三者区别

    isEqual :首先判断的时对象类型是否 一样,然后再判断具体内容是否一致:如果类型不一样,return no: isEqualToString: 直接判断字符串内容,便捷更快速,但是前提确保比较的 ...

  6. PHP 发送与接收流文件

    http://blog.csdn.net/fdipzone/article/details/40098169

  7. ubuntu14.04LTS编译MUDOS v22.2b14

    附:MudOS v22.2b14下载连接 简单的编译步骤: (1)运行./build.MudOS (2)vim socket_efuns.c       o 修改Ln:1198的代码为         ...

  8. Filco minila 的蛋疼。

    3494左shift坏了,期间邮寄厂家维修,就把尘封多年的minila拿出来用着. 最为人诟病的问题:蓝亚适配,与mac跟iphone都能快速的匹配连接上.但是对于我的dell vestro 2012 ...

  9. |原创|unity 4.3 2D功能SpriteRenderer修改颜色的方法

    4.3增加了不少2D功能,然后实在没有找到有人分享,在国外查资料研究一下午然后给个简单的教程 ===================================================== ...

  10. C#- 反射之 GetType()方法

    Type.GetType()在跨程序集反射时返回null的解决方法 在开发中,经常会遇到这种情况,在程序集A.dll中需要反射程序集B.dll中的类型.如果使用稍有不慎,就会产生运行时错误.例如使用T ...