BZOJ4176: Lucas的数论
Description
去年的Lucas非常喜欢数论题,但是一年以后的Lucas却不那么喜欢了。

Input
第一行一个整数n。
Output
一行一个整数ans,表示答案模1000000007的值。
Sample Input
Sample Output
HINT
对于100%的数据n <= 10^9。

#include<cstdio>
#include<cctype>
#include<queue>
#include<map>
#include<cstring>
#include<algorithm>
#define rep(i,s,t) for(int i=s;i<=t;i++)
#define dwn(i,s,t) for(int i=s;i>=t;i--)
#define ren for(int i=first[x];i;i=next[i])
using namespace std;
const int BufferSize=1<<16;
char buffer[BufferSize],*head,*tail;
inline char Getchar() {
if(head==tail) {
int l=fread(buffer,1,BufferSize,stdin);
tail=(head=buffer)+l;
}
return *head++;
}
inline int read() {
int x=0,f=1;char c=getchar();
for(;!isdigit(c);c=getchar()) if(c=='-') f=-1;
for(;isdigit(c);c=getchar()) x=x*10+c-'0';
return x*f;
}
typedef long long ll;
const int SIZE=1000000;
const int mod=1000000007;
bool vis[SIZE+10];
int mu[SIZE+10],pri[SIZE/10],cnt;
void init(int n) {
vis[1]=mu[1]=1;
rep(i,2,n) {
if(!vis[i]) pri[++cnt]=i,mu[i]=-1;
rep(j,1,cnt) {
if(i*pri[j]>n) break;
vis[i*pri[j]]=1;
if(i%pri[j]==0) break;
mu[i*pri[j]]=-mu[i];
}
}
rep(i,2,n) mu[i]+=mu[i-1];
}
map<int,int> M;
int getmu(int n) {
if(n<=SIZE) return mu[n];
if(M.count(n)) return M[n];
int ans=1;
rep(i,2,n) {
int last=n/(n/i);
ans=(ans-(ll)(last-i+1)*getmu(n/i)%mod+mod)%mod;
i=last;
}
return M[n]=ans;
}
int getf(int n) {
int ans=0;
rep(i,1,n) {
int last=n/(n/i);
(ans+=(ll)(n/i)*(last-i+1)%mod)%=mod;
i=last;
}
return (ll)ans*ans%mod;
}
int main() {
int n=read();init(1000000);
ll ans=0;
rep(i,1,n) {
int last=n/(n/i);
(ans+=(ll)getf(n/i)*(getmu(last)-getmu(i-1)+mod))%=mod;
i=last;
}
printf("%lld\n",ans);
return 0;
}
BZOJ4176: Lucas的数论的更多相关文章
- BZOJ4176 Lucas的数论 【莫比乌斯反演 + 杜教筛】
题目 去年的Lucas非常喜欢数论题,但是一年以后的Lucas却不那么喜欢了. 在整理以前的试题时,发现了这样一道题目"求Sigma(f(i)),其中1<=i<=N", ...
- bzoj4176. Lucas的数论 杜教筛
题意:求\(\sum_{i=1}^n\sum_{j=1}^nd(ij),d是约数个数函数\) 题解:首先有一个结论\(d(ij)=\sum_{x|i}\sum_{y|j}[(i,j)==1]\) 那么 ...
- 【BZOJ4176】Lucas的数论 莫比乌斯反演
[BZOJ4176]Lucas的数论 Description 去年的Lucas非常喜欢数论题,但是一年以后的Lucas却不那么喜欢了. 在整理以前的试题时,发现了这样一道题目“求Sigma(f(i)) ...
- Lucas的数论题解
Lucas的数论 reference 题目在这里> < Pre 数论分块 默认向下取整时. 形如\(\sum\limits_{i=1}^n f\left( \frac{n}{i}\righ ...
- Lucas的数论(math)
Lucas的数论(math) 题目描述 去年的今日,Lucas仍然是一个热爱数学的孩子.(现在已经变成业界毒瘤了> <) 在整理以前的试题时,他发现了这么一道题目:求\(\sum\limi ...
- BZOJ 4176: Lucas的数论 [杜教筛]
4176: Lucas的数论 题意:求\(\sum_{i=1}^n \sum_{j=1}^n \sigma_0(ij)\) \(n \le 10^9\) 代入\(\sigma_0(nm)=\sum_{ ...
- bzoj 4176: Lucas的数论 -- 杜教筛,莫比乌斯反演
4176: Lucas的数论 Time Limit: 30 Sec Memory Limit: 256 MB Description 去年的Lucas非常喜欢数论题,但是一年以后的Lucas却不那么 ...
- bzoj 4176 Lucas的数论
bzoj 4176 Lucas的数论 和约数个数和那题差不多.只不过那个题是多组询问,这题只询问一次,并且 \(n\) 开到了 \(10^9\). \[ \begin{align*} \sum_{i= ...
- Mobius反演与积性函数前缀和演学习笔记 BZOJ 4176 Lucas的数论 SDOI 2015 约数个数和
下文中所有讨论都在数论函数范围内开展. 数论函数指的是定义域为正整数域, 且值域为复数域的函数. 数论意义下的和式处理技巧 因子 \[ \sum_{d | n} a_d = \sum_{d | n} ...
随机推荐
- Pyqt 时时CPU使用情况
借鉴代码来自:https://github.com/hgoldfish/quickpanel 实现代码: # -*- coding:utf-8 -*- from __future__ import p ...
- 你可能不知道的java、python、JavaScript以及jquary循环语句的区别
一.概述 java循环语句分为四种形式,分别是 while, do/while, for, foreach: python中循环语句有两种,while,for: JavaScript中循环语句有四种, ...
- javascript实用技巧,js小知识
一.js整数的操作 使用|0和~~可以将浮点转成整型且效率方面要比同类的parseInt,Math.round 要快,在处理像素及动画位移等效果的时候会很有用.性能比较见此. var foo = (1 ...
- 面试题之【打印1到最大的N位数】
题目描述:给定一个数字N,打印从1到最大的N位数. 看起来像是很简单的问题(虽然实际也不是很难...)我们很容易写出这样的代码: #include<iostream> #include&l ...
- 函数调用关于从Ring3转到Ring0 ESP堆栈变化
在ring0堆栈获取ring3堆栈方式 第一种方式 [esp+4] == [esp+参数个数*4+4] 如果这里不相等就需要用第二种方式 [[esp+参数个数*4+8]] 这里面的值就是Ring3的堆 ...
- Java学习笔记(五)——数组
一.数组使用方法 1. 声明数组 语法: 数据类型[ ] 数组名: 或者 数据类型 数组名[ ]: 其中,数组名可以是任意合法的变量名 2. 分配空间 简单地说,就是指定数组中最多可存储多少个元素 ...
- Input对象的type类型
Input表示Form表单中的一种输入对象,其又随Type类型的不同而分文本输入框,密码输入框,单选/复选框,提交/重置按钮等,下面一一介绍. 1,type=text 输入类型是text ...
- opacity
.css{filter:alpha(opacity:30);/*filter是给IE用到*/opacity:.3; }
- MOB 短信验证
工具/原料 Android Studio mob SDK中的jar 和.so文件 方法/步骤 1 把3个jar 放入libs 并添加依赖 在项目的build.gradle里面 在你的项 ...
- python 多重继承
多重继承 除了从一个父类继承外,Python允许从多个父类继承,称为多重继承. 多重继承的继承链就不是一棵树了,它像这样: class A(object): def __init__(self, a) ...