BZOJ4176: Lucas的数论
Description
去年的Lucas非常喜欢数论题,但是一年以后的Lucas却不那么喜欢了。

Input
第一行一个整数n。
Output
一行一个整数ans,表示答案模1000000007的值。
Sample Input
Sample Output
HINT
对于100%的数据n <= 10^9。

#include<cstdio>
#include<cctype>
#include<queue>
#include<map>
#include<cstring>
#include<algorithm>
#define rep(i,s,t) for(int i=s;i<=t;i++)
#define dwn(i,s,t) for(int i=s;i>=t;i--)
#define ren for(int i=first[x];i;i=next[i])
using namespace std;
const int BufferSize=1<<16;
char buffer[BufferSize],*head,*tail;
inline char Getchar() {
if(head==tail) {
int l=fread(buffer,1,BufferSize,stdin);
tail=(head=buffer)+l;
}
return *head++;
}
inline int read() {
int x=0,f=1;char c=getchar();
for(;!isdigit(c);c=getchar()) if(c=='-') f=-1;
for(;isdigit(c);c=getchar()) x=x*10+c-'0';
return x*f;
}
typedef long long ll;
const int SIZE=1000000;
const int mod=1000000007;
bool vis[SIZE+10];
int mu[SIZE+10],pri[SIZE/10],cnt;
void init(int n) {
vis[1]=mu[1]=1;
rep(i,2,n) {
if(!vis[i]) pri[++cnt]=i,mu[i]=-1;
rep(j,1,cnt) {
if(i*pri[j]>n) break;
vis[i*pri[j]]=1;
if(i%pri[j]==0) break;
mu[i*pri[j]]=-mu[i];
}
}
rep(i,2,n) mu[i]+=mu[i-1];
}
map<int,int> M;
int getmu(int n) {
if(n<=SIZE) return mu[n];
if(M.count(n)) return M[n];
int ans=1;
rep(i,2,n) {
int last=n/(n/i);
ans=(ans-(ll)(last-i+1)*getmu(n/i)%mod+mod)%mod;
i=last;
}
return M[n]=ans;
}
int getf(int n) {
int ans=0;
rep(i,1,n) {
int last=n/(n/i);
(ans+=(ll)(n/i)*(last-i+1)%mod)%=mod;
i=last;
}
return (ll)ans*ans%mod;
}
int main() {
int n=read();init(1000000);
ll ans=0;
rep(i,1,n) {
int last=n/(n/i);
(ans+=(ll)getf(n/i)*(getmu(last)-getmu(i-1)+mod))%=mod;
i=last;
}
printf("%lld\n",ans);
return 0;
}
BZOJ4176: Lucas的数论的更多相关文章
- BZOJ4176 Lucas的数论 【莫比乌斯反演 + 杜教筛】
题目 去年的Lucas非常喜欢数论题,但是一年以后的Lucas却不那么喜欢了. 在整理以前的试题时,发现了这样一道题目"求Sigma(f(i)),其中1<=i<=N", ...
- bzoj4176. Lucas的数论 杜教筛
题意:求\(\sum_{i=1}^n\sum_{j=1}^nd(ij),d是约数个数函数\) 题解:首先有一个结论\(d(ij)=\sum_{x|i}\sum_{y|j}[(i,j)==1]\) 那么 ...
- 【BZOJ4176】Lucas的数论 莫比乌斯反演
[BZOJ4176]Lucas的数论 Description 去年的Lucas非常喜欢数论题,但是一年以后的Lucas却不那么喜欢了. 在整理以前的试题时,发现了这样一道题目“求Sigma(f(i)) ...
- Lucas的数论题解
Lucas的数论 reference 题目在这里> < Pre 数论分块 默认向下取整时. 形如\(\sum\limits_{i=1}^n f\left( \frac{n}{i}\righ ...
- Lucas的数论(math)
Lucas的数论(math) 题目描述 去年的今日,Lucas仍然是一个热爱数学的孩子.(现在已经变成业界毒瘤了> <) 在整理以前的试题时,他发现了这么一道题目:求\(\sum\limi ...
- BZOJ 4176: Lucas的数论 [杜教筛]
4176: Lucas的数论 题意:求\(\sum_{i=1}^n \sum_{j=1}^n \sigma_0(ij)\) \(n \le 10^9\) 代入\(\sigma_0(nm)=\sum_{ ...
- bzoj 4176: Lucas的数论 -- 杜教筛,莫比乌斯反演
4176: Lucas的数论 Time Limit: 30 Sec Memory Limit: 256 MB Description 去年的Lucas非常喜欢数论题,但是一年以后的Lucas却不那么 ...
- bzoj 4176 Lucas的数论
bzoj 4176 Lucas的数论 和约数个数和那题差不多.只不过那个题是多组询问,这题只询问一次,并且 \(n\) 开到了 \(10^9\). \[ \begin{align*} \sum_{i= ...
- Mobius反演与积性函数前缀和演学习笔记 BZOJ 4176 Lucas的数论 SDOI 2015 约数个数和
下文中所有讨论都在数论函数范围内开展. 数论函数指的是定义域为正整数域, 且值域为复数域的函数. 数论意义下的和式处理技巧 因子 \[ \sum_{d | n} a_d = \sum_{d | n} ...
随机推荐
- HTTP/1.1 中 If-Modified-Since 和 If-Unmodified-Since 区别简记
接触HTTP/1.1的时日还不多, 有时候看着这两个参数老是有点混淆, 今天终于理清了, 现记录下. 初学网络, 若有理解不对, 还请拍砖. If-Modified-Since: 从字面上看, ...
- 学生成绩管理系统[C]
#include<stdio.h> #include<stdlib.h> #include<string.h> #include<conio.h> #d ...
- bat学习
http://www.cnblogs.com/gaohongchen01/p/4042047.html http://www.cnblogs.com/amylis_chen/p/3585339.htm ...
- Fragment 操作原理
fragment 本质 fragment 本质上是 view 的容器和控制器,fragment 是 activity 的碎片. activity 是什么呢?activity 是四大组件之一,因为 ...
- Input对象的type类型
Input表示Form表单中的一种输入对象,其又随Type类型的不同而分文本输入框,密码输入框,单选/复选框,提交/重置按钮等,下面一一介绍. 1,type=text 输入类型是text ...
- SQLServer 维护脚本分享(08)临时数据库(tempdb)
dbcc sqlperf(logspace) --各数据库日志大小及使用百分比 dbcc loginfo --查看当前数据库的虚拟日志文件 --临时表'Tempdb'最近使用情况 SELECT t1. ...
- HTML meta viewport属性说明(mark)
什么是Viewport 手机浏览器是把页面放在一个虚拟的“窗口”(viewport)中,通常这个虚拟的“窗口”(viewport)比屏幕宽,这样就不用把每个网页挤 到很小的窗口中(这样会破坏没有针对手 ...
- JQuery学习之操作CSS
样式表: .important{ font-weight:bold; font-size:xx-large; } .blue{ color:blue; } 1.addClass():向被选元素添加一个 ...
- Swift3.0语言教程字符串转换为数字值
Swift3.0语言教程字符串转换为数字值 Swift3.0语言教程字符串转换为数字值,在NSString中,开发者可以将字符串转换为数字值,通过这些数字值可以实现一些功能,如加法运算.减法运算等.数 ...
- delphi 对Tmemo指定的行写入
mmoMonitor:Tmemo; mmoMonitor.Lines.ValueFromIndex[0]:=aInfo ; procedure TMainForm.LogInfo(aInfo: str ...