Softmax function

Softmax 函数 \(y=[y_1,\cdots,y_m]\) 定义如下:
\[y_i=\frac{exp(z_i)}{\sum\limits_{j=1}^m{exp(z_j)}}, i=1,2,\cdots,m\]

它具有很好的求导性质:
\[\frac{\partial y_i}{\partial z_i}=y_i* (1-y_i)\]

其中,\(y\)的每一个维度 \(y_i\) 表明,属于第 \(i\) 类的概率。求导过程,请参考:Softmax vs. Softmax-Loss: Numerical Stability

Negative log-likehood

当我们使用softmax 函数作为 output function的时候,即:
\[y=softmax(z)\]
\(z\) 在这里只表示某些需要优化的参数。

我们需要选择 negiative log-likelihood 作为代价函数( cost function), 也被称作 Cross-Entropy cost function. 即:
\[ E(t,y)= -\sum\limits_i {t_i \log y_i} \]

\(t\)表示的是 tagert, \(y\) 表示的是model's prediction. 通常,\(t\) 表示的是 one-hot representation, \(y\) 表示的是各类的 predicted probability.

Note

如果 \(t\) 采用的是 one-hot representation, 那么我们的计算公式是:
\[ E(t,y)= -t \log y\]

如果 \(t\) 是对应的 index, 而 \(y\) 是对应的 predicted probability vector 的话,计算公式:
\[ E(t,y)= - \log y [t]\]

它的求导公式也很简单:
\[\frac{\partial E(t,y)}{\partial z_i}= \sum\limits_j {\frac{\partial E(t,y)}{\partial y_i}\frac{\partial y_j}{\partial z_j}}= y_i -t_i\]

Note

如果 \(t\) 采用的是 one-hot representation, 那么我们的计算公式是:
\[ \frac{\partial E(t,y)}{\partial z}= y -z\]

如果 \(t\) 是对应的 index, 而 \(y\) 是对应的 predicted probability vector 的话,计算公式:
\[y[t]-=1\]
\[ \frac{\partial E(t,y)}{\partial z} := y\]

Negative log-likelihood function的更多相关文章

  1. 似然函数(likelihood function)

    1. 似然函数基本定义 令 X1,X2,-,Xn 为联合密度函数 f(X1,X2,-,Xn|θ),给定观测值 X1=x1,X2=x2,-,Xn=xn,关于 θ 的似然函数(likelihood fun ...

  2. What is the reason that a likelihood function is not a pdf?

    From: http://stats.stackexchange.com/questions/31238/what-is-the-reason-that-a-likelihood-function-i ...

  3. likelihood(似然) and likelihood function(似然函数)

    知乎上关于似然的一个问题:https://www.zhihu.com/question/54082000 概率(密度)表达给定下样本随机向量的可能性,而似然表达了给定样本下参数(相对于另外的参数)为真 ...

  4. Likelihood function

    似然函数 统计学中,似然函数是一种关于统计模型参数的函数,表示模型参数中的似然性. 给定输出x时,关于参数θ的似然函数L(θ|x)(在数值上)等于给定参数θ后变量X的概率:L(θ|x)=P(X=x|θ ...

  5. 似然函数 | 最大似然估计 | likelihood | maximum likelihood estimation | R代码

    学贝叶斯方法时绕不过去的一个问题,现在系统地总结一下. 之前过于纠结字眼,似然和概率到底有什么区别?以及这一个奇妙的对等关系(其实连续才是f,离散就是p). 似然函数 | 似然值 wiki:在数理统计 ...

  6. CCJ PRML Study Note - Chapter 1.6 : Information Theory

    Chapter 1.6 : Information Theory     Chapter 1.6 : Information Theory Christopher M. Bishop, PRML, C ...

  7. a note of R software write Function

    Functionals “To become significantly more reliable, code must become more transparent. In particular ...

  8. 负对数似然(negative log-likelihood)

    negative log likelihood文章目录negative log likelihood似然函数(likelihood function)OverviewDefinition离散型概率分布 ...

  9. [pytorch]pytorch loss function 总结

    原文: http://www.voidcn.com/article/p-rtzqgqkz-bpg.html 最近看了下 PyTorch 的损失函数文档,整理了下自己的理解,重新格式化了公式如下,以便以 ...

  10. 高斯混合模型(GMM)

    复习: 1.概率密度函数,密度函数,概率分布函数和累计分布函数 概率密度函数一般以大写“PDF”(Probability Density Function),也称概率分布函数,有的时候又简称概率分布函 ...

随机推荐

  1. Python中list,tuple,dict,set的区别和用法

    Python语言简洁明了,可以用较少的代码实现同样的功能.这其中Python的四个内置数据类型功不可没,他们即是list, tuple, dict, set.这里对他们进行一个简明的总结. List ...

  2. JavaScript UI选型及Jquery EasyUI使用经验谈

    最近由于项目需要,对js UI作了一些简单的了解和使用,有自己的一些想法,在这里留个记录. 当然,我的专注点在管理系统的范围内,所以互联网网站及其他形态的应用这里不提及,所以jQuery UI和Boo ...

  3. js中字符串和数组相互转化的方法

    p.p1 { margin: 0.0px 0.0px 0.0px 0.0px; font: 12.0px "Helvetica Neue"; color: #e4af0a } p. ...

  4. js如何判断一个数组

    typeof [] 为一个"object" 不能通过此方法判断一个数组 方法 1.instanceof方法,这个方法用的比较多. 2.这个是es5以后推荐的方法,Object.pr ...

  5. 替罪羊树模板(BZOJ1056/1862)

    #include<cstdio> #include<cstring> #include<cmath> #include<iostream> #defin ...

  6. SDN组网相关解决方案

    http://www.muzixing.com/pages/2016/02/14/sdnzu-wang-xiang-guan-jie-jue-fang-an.html 2016-02-14 by mu ...

  7. php file_get_contents失败[function.file-get-contents]: failed to open stream: HTTP request failed!解决

    在使用file_get_contents方法来获取远程文件时会出现 [function.file-get-contents]: failed to open stream: HTTP request ...

  8. js中的forEach

    chrome和firefox支持数组的forEach,但不支持对象的forEach,IE啥都不支持 jquery中的$.each(ArrayOrObject,function)既可以遍历数组又可以遍历 ...

  9. C# 反射范范的理解下

    程序进行时引入程序集.动态的调用方法属性事件. Assembly类. type类.

  10. yii2干货

    Sites 网站 yiifeed:Yii 最新动态都在这里 yiigist:Yii 专用的 Packages my-yii:Yii 学习资料和新闻 Docs 文档 Yii Framework 2.0 ...