1010: [HNOI2008]玩具装箱toy

Time Limit: 1 Sec  Memory Limit: 162 MB
Submit: 8432  Solved: 3338
[Submit][Status][Discuss]

Description

P教授要去看奥运,但是他舍不下他的玩具,于是他决定把所有的玩具运到北京。他使用自己的压缩器进行压缩,其可以将任意物品变成一堆,再放到一种特殊的一维容器中。P教授有编号为1...N的N件玩具,第i件玩具经过压缩后变成一维长度为Ci.为了方便整理,P教授要求在一个一维容器中的玩具编号是连续的。同时如果一个一维容器中有多个玩具,那么两件玩具之间要加入一个单位长度的填充物,形式地说如果将第i件玩具到第j个玩具放到一个容器中,那么容器的长度将为 x=j-i+Sigma(Ck) i<=K<=j 制作容器的费用与容器的长度有关,根据教授研究,如果容器长度为x,其制作费用为(X-L)^2.其中L是一个常量。P教授不关心容器的数目,他可以制作出任意长度的容器,甚至超过L。但他希望费用最小.

Input

第一行输入两个整数N,L.接下来N行输入Ci.1<=N<=50000,1<=L,Ci<=10^7

Output

输出最小费用

Sample Input

5 4
3
4
2
1
4

Sample Output

1

HINT

Source

Solution

DP + 斜率优化

先考虑正常的转移 $dp[i]=min(dp[i],dp[j]+(i-j-1+sum[i]-sum[j]-L)^2)$

复杂度不符合,那么考虑斜率优化

首先设$sumc[i]=sum[i]+i$ 转移方程可以化作 $dp[i]=min(dp[i],dp[j]+(sumc[i]-sumc[j]-L-1)^2)$

那么可以开始化简$dp[k]+(sumc[i]-sumc[k]-L-1)^2<=dp[j]+(sumc[i]-sumc[j]-L-1)^2$

最后化简出$(dp[k]-dp[j]+pf(sumc[k]+L+1)-pf(sumc[j]+L+1))/(2*(sumc[k]-sumc[j]))<sumc[i]$

那么$sumc[]$是单调递增的,单调队列维护下凸包,就可以做了

Code

#include<iostream>
#include<cstdio>
#include<algorithm>
#include<cstring>
#include<cmath>
using namespace std;
int read()
{
int x=,f=; char ch=getchar();
while (ch<'' || ch>'') {if (ch=='-') f=-; ch=getchar();}
while (ch>='' && ch<='') {x=x*+ch-''; ch=getchar();}
return x*f;
}
#define maxn 50010
int n,L; int c[maxn]; int que[maxn],l,r;
long long dp[maxn],sumc[maxn];
long long pf(long long x) {return x*x;}
double slope(int i,int j)
{
double fz=dp[j]-dp[i]+pf(sumc[j]+L+)-pf(sumc[i]+L+);
double fm=*(sumc[j]-sumc[i]);
return fz/fm;
}
int main()
{
n=read(),L=read();
for (int i=; i<=n; i++) c[i]=read(),sumc[i]=sumc[i-]+c[i];
for (int i=; i<=n; i++) sumc[i]+=i;
for (int tmp,i=; i<=n; i++)
{
while (l<r && slope(que[l],que[l+])<sumc[i]) l++;
tmp=que[l];
dp[i]=dp[tmp]+pf(sumc[i]-sumc[tmp]-L-);
while (l<r && slope(que[r],i)<slope(que[r-],que[r])) r--;
que[++r]=i;
}
printf("%lld\n",dp[n]);
return ;
}

这么写常数会很大...

【BZOJ-1010】玩具装箱toy DP + 斜率优化的更多相关文章

  1. BZOJ 1010 玩具装箱toy(斜率优化DP)

    题目链接:http://www.lydsy.com/JudgeOnline/problem.php?id=1010 题目大意:P教授要去看奥运,但是他舍不下他的玩具,于是他决定把所有的玩具运到北京.他 ...

  2. BZOJ 1010: [HNOI2008]玩具装箱toy [DP 斜率优化]

    1010: [HNOI2008]玩具装箱toy Time Limit: 1 Sec  Memory Limit: 162 MBSubmit: 9812  Solved: 3978[Submit][St ...

  3. [HNOI2008]玩具装箱TOY --- DP + 斜率优化 / 决策单调性

    [HNOI2008]玩具装箱TOY 题目描述: P教授要去看奥运,但是他舍不下他的玩具,于是他决定把所有的玩具运到北京. 他使用自己的压缩器进行压缩,其可以将任意物品变成一堆,再放到一种特殊的一维容器 ...

  4. BZOJ.1010.[HNOI2008]玩具装箱toy(DP 斜率优化/单调队列 决策单调性)

    题目链接 斜率优化 不说了 网上很多 这的比较详细->Click Here or Here //1700kb 60ms #include<cstdio> #include<cc ...

  5. 1010: [HNOI2008]玩具装箱toy [dp][斜率优化]

    Description P教授要去看奥运,但是他舍不下他的玩具,于是他决定把所有的玩具运到北京.他使用自己的压缩器进行压缩,其可以将任意物品变成一堆,再放到一种特殊的一维容器中.P教授有编号为1... ...

  6. BZOJ1010: [HNOI2008]玩具装箱toy(dp+斜率优化)

    Time Limit: 1 Sec  Memory Limit: 162 MBSubmit: 12451  Solved: 5407[Submit][Status][Discuss] Descript ...

  7. 【BZOJ 1010】 [HNOI2008]玩具装箱toy (斜率优化)

    1010: [HNOI2008]玩具装箱toy Time Limit: 1 Sec  Memory Limit: 162 MBSubmit: 9330  Solved: 3739 Descriptio ...

  8. 1010: [HNOI2008]玩具装箱toy(斜率优化)

    1010: [HNOI2008]玩具装箱toy Time Limit: 1 Sec  Memory Limit: 162 MBSubmit: 12280  Solved: 5277[Submit][S ...

  9. [HNOI2008]玩具装箱toy(斜率优化dp)

    前言 这是我写的第一道$dp$斜率优化的题目,$dp$一直都很菜,而且咖啡鸡都说了这是基础的东西,然而看别人对$dp$斜率优化一大堆公式又看不懂就老老实实做几道题目,这个比较实在 描述 给出$n$和$ ...

随机推荐

  1. linux svn

    1.回滚 一直在找svn回滚的方法,这个还是很实用的,屡试不爽阿 经常由于坑爹的需求,功能要切回到之前的某一个版本.有两种方法可以实现: 方法1: 用svn merge  1) 先 svn up,保证 ...

  2. Centos5.8 安装 PHP5.5 和 memcached

    安装GIT 需要先安装gcc-c++ (sudo yum install gcc-c++) sudo yum install gettext-devel expat-devel cpio perl o ...

  3. Java 集合系列07之 Stack详细介绍(源码解析)和使用示例

    概要 学完Vector了之后,接下来我们开始学习Stack.Stack很简单,它继承于Vector.学习方式还是和之前一样,先对Stack有个整体认识,然后再学习它的源码:最后再通过实例来学会使用它. ...

  4. noip2008 双栈排序

    题目描述 Description \(Tom\)最近在研究一个有趣的排序问题.如图所示,通过\(2\)个栈\(S_1\)和\(S_2\),\(Tom\)希望借助以下\(4\)种操作实现将输入序列升序排 ...

  5. [转]JS调用Android里面的方法,Android调用JS里面的方法

    FROM : http://blog.csdn.net/hj563308597/article/details/45197709 Android WebView 在公司Android的开发过程中遇到一 ...

  6. css 内容超过容器宽度,checkbox等控件不会随着内容延伸

    <div a> <div id='内容容器'> <div>很长的内容</div><input type='checkbox'/> </ ...

  7. MyEclipse对Struts2配置文件较检异常 Invalid result location value/parameter

    有时在编写struts.xml时会报错,但是找不出有什么她方有问题.也能正常运行 MyEclipse有地方去struts的xml进行了验证,经查找把这里 的build去掉就可以了

  8. TortoiseSVN安装使用(转)

    TortoiseSVN是windows平台下Subversion的免费开源客户端. 一般我们都是先讲讲服务器的配置,然后再讲客户端的使用,但是在TortoiseSVN上,却可以反过来.因为,如果你的要 ...

  9. [NOIP摸你赛]Hzwer的陨石(带权并查集)

    题目描述: 经过不懈的努力,Hzwer召唤了很多陨石.已知Hzwer的地图上共有n个区域,且一开始的时候第i个陨石掉在了第i个区域.有电力喷射背包的ndsf很自豪,他认为搬陨石很容易,所以他将一些区域 ...

  10. 如何实现EndNote中的PDF批量导出

    如果在EndNote数据库中已建立大量的参考文献,且每条文献都有PDF文件对应,怎样将需要的某十几条甚至几十条参考文献对应的PDF文件从数据库导出另存在新建的文件夹   1. 按住“Ctrl”键,逐条 ...