BZOJ 1853: [Scoi2010]幸运数字
1853: [Scoi2010]幸运数字
Time Limit: 2 Sec Memory Limit: 64 MB
Submit: 2117 Solved: 779
[Submit][Status][Discuss]
Description
Input
Output
Sample Input
1 10
【样例输入2】
1234 4321
Sample Output
2
【样例输出2】
809
HINT
【数据范围】
对于30%的数据,保证1 < =a < =b < =1000000
对于100%的数据,保证1 < =a < =b < =10000000000
Source
分析
不难想到用容斥原理来统计。
先预处理出所有小于1e10的幸运数字,并不是很多。但是发现枚举所有的组合还是会爆炸的,需要一些剪枝。
1. 对于两个幸运数字,x<y,如果有y为x的倍数,则y可以忽略,因为x可以完全覆盖y的倍数。
2. 对于一种组合,如果目前的积已经大于N,即再进行下去得到的都是加减0的无意义操作,可以直接跳出。
3. 可以把GCD函数写成非递归的形式,但貌似没多大用,跑出来的结果差距不是很大,也许是我写得不好。
4. 枚举的时候从大往小枚举,据说有奇效,因为懒癌晚期,我并没有对比验证。
代码
#include <bits/stdc++.h> using namespace std; typedef long long LL; const int N = ; const LL lim = 10000000000LL; template <class T>
__inline void read(T &x)
{
x = ; char c = getchar(); while (c < '')
c = getchar(); while (c >= '')
{
x = x* + c - '';
c = getchar();
}
} LL gcd(LL a, LL b)
{
if (a < b)
{
a ^= b;
b ^= a;
a ^= b;
}
while (b)
{
a %= b;
a ^= b;
b ^= a;
a ^= b;
}
return a;
} LL num[N]; int tot = ; __inline void prework(void)
{
int t, tail = ; for (t = ; num[t] <= lim; ++t)
{
num[++tail] = num[t] * + ;
num[++tail] = num[t] * + ;
} for (int i = ; i <= t; ++i)
{
bool flag = true;
for (int j = ; j <= tot; ++j)
if (num[i] % num[j] == )
{ flag = false; break; }
if (flag)num[++tot] = num[i];
}
} LL answer, limit; void search(int t, bool f, LL sum)
{
if (t)
{
search(t - , f, sum); LL GCD = gcd(num[t], sum); if (sum / GCD <= limit / num[t])
{
LL LCM = sum / GCD * num[t]; if (f)
answer -= limit / LCM;
else
answer += limit / LCM; search(t - , !f, LCM);
}
}
} __inline LL count(LL n)
{
limit = n;
answer = ; int pos = ; while (pos <= tot
&& num[pos] <= n)++pos; search(pos - , , ); return answer;
} signed main(void)
{
prework(); LL a; read(a);
LL b; read(b); printf("%lld\n",
count(b)
- count(a - )
);
}
BZOJ_1853.cpp
@Author: YouSiki
BZOJ 1853: [Scoi2010]幸运数字的更多相关文章
- Bzoj 1853: [Scoi2010]幸运数字 容斥原理,深搜
1853: [Scoi2010]幸运数字 Time Limit: 2 Sec Memory Limit: 64 MBSubmit: 1774 Solved: 644[Submit][Status] ...
- bzoj 1853: [Scoi2010]幸运数字 容斥
1853: [Scoi2010]幸运数字 Time Limit: 2 Sec Memory Limit: 64 MBSubmit: 1170 Solved: 406[Submit][Status] ...
- BZOJ 1853: [Scoi2010]幸运数字(容斥原理)
http://www.lydsy.com/JudgeOnline/problem.php?id=1853 题意: 在中国,很多人都把6和8视为是幸运数字!lxhgww也这样认为,于是他定义自己的“幸运 ...
- bzoj 1853: [Scoi2010]幸运数字&&2393: Cirno的完美算数教室【容斥原理】
翻了一些blog,只有我用状压预处理嘛2333,.把二进制位的0当成6,1当成8就行啦.(2393是2和9 然后\( dfs \)容斥,加上一个数的\( lcm \),减去两个数的\( lcm \), ...
- ●BZOJ 1853 [Scoi2010]幸运数字
题链: http://www.lydsy.com/JudgeOnline/problem.php?id=1853 题解: 容斥原理,暴力搜索,剪枝(这剪枝剪得真玄学) 首先容易发现,幸运号码不超过 2 ...
- 【BZOJ 1853】 1853: [Scoi2010]幸运数字 (容斥原理)
1853: [Scoi2010]幸运数字 Time Limit: 2 Sec Memory Limit: 64 MBSubmit: 2472 Solved: 911 Description 在中国 ...
- 1853: [Scoi2010]幸运数字[容斥原理]
1853: [Scoi2010]幸运数字 Time Limit: 2 Sec Memory Limit: 64 MBSubmit: 2405 Solved: 887[Submit][Status] ...
- BZOJ2393 & 1853 [Scoi2010]幸运数字 【搜索 + 容斥】
题目 在中国,很多人都把6和8视为是幸运数字!lxhgww也这样认为,于是他定义自己的"幸运号码"是十进制表示中只包含数字6和8的那些号码,比如68,666,888都是" ...
- AC日记——[SCOI2010]幸运数字 bzoj 1853
1853: [Scoi2010]幸运数字 Time Limit: 2 Sec Memory Limit: 64 MBSubmit: 2405 Solved: 887[Submit][Status] ...
随机推荐
- HOJ 2713 Matrix1
Matrix1 My Tags (Edit) Source : Classical Problem Time limit : 5 sec Memory limit : 64 M Sub ...
- MySQL导入sql脚本错误:2006 - MySQL server has gone away
到如一些小脚本很少报错,但最近导入一个10+M的SQL脚本,却重复报错: Error occured at:2014-03-24 11:42:24 Line no.:85 Error Code: 20 ...
- 针对苹果最新审核要求为应用兼容IPv6
在WWDC2015上苹果宣布iOS9将支持纯IPv6的网络服务.2016年初开始所有提交到App Store的应用必须支持IPv6.为确保现有的应用是兼容的,我们需要注意下面几点. 不建议使用底层的网 ...
- 在Mac mini上安装 ESXi 5.5
Mac mini 是 mid 2011 版本的, 安装原版ESXi 5.5 update 1 非常顺利, 没遇到任何问题. 提示: 1. 安装会初始化整个硬盘, 有数据要先备份 2. ESXi只使用有 ...
- es6+react环境搭建
工具说明 Node Koa React Webpack 项目结构 - build 客户端代码的构建文件目录 - config 项目的配置文件 - docs 项目相关的文档目录 - lib 服务端库文件 ...
- 20145221 《信息安全系统设计基础》实验五 简单嵌入式WEB服务器实验
20145221 <信息安全系统设计基础>实验五 简单嵌入式WEB服务器实验 实验报告 队友博客:20145326蔡馨熠 实验博客:<信息安全系统设计基础>实验五 简单嵌入式W ...
- 【前端也要学点算法】 归并排序的JavaScript实现
前文我们了解了快速排序算法的实现,本文我们来了解下另一种流行的排序算法-归并排序算法. 我们先来回顾下快排.快排的核心是找出一个基准元素,把数组中比该元素小的放到左边数组,比该元素大的放到右边数组,如 ...
- Code First操作Mysql数据库
前面博客也讲了,自己做一个网站,选用的是MVC+EF Code First+MySql+EasyUI,先说下技术选型.一.为什么选择MVC? 因为之前自己做的系统大部分是webForm,MVC的之前也 ...
- Lucene.Net的服务器封装+APi组件 (开源)
为什么要封装 真不知道用什么标题合适,我这几天在研究Lucene.Net,觉得把Lucene.Net封装为一个独立的服务器,再提供一个给客户端调用的Api组件应该是一件很意思的事,主要优势有以下: 1 ...
- 求height数组
procedure getheight; var i,po1,po2:longint; begin to len do begin ; po1:=i;po2:=sa[rank[i]-]; while ...