一、二叉树

定义:每个节点都不能有多于两个的儿子的树。

二叉树节点声明:

 struct treeNode
{
elementType element;
treeNode * left;
treeNode * right;
}

应用:

中缀表达式——>后缀表达式(栈的应用)——>表达式树(栈的应用2)

栈的应用2:读取后缀表达式,操作数入栈,遇操作符后,指向栈里前两位元素t1和t2的指针出栈(t1先弹出,作为该操作符的右儿子),并将指向该操作符的指针入栈。

二、二叉查找树

定义:

结构性:二叉树;

排序性:右子树中最小值  >  X关键字  >  左子树中最大值(对任意节点关键字X均成立)

1、清空树(递归)makeEmpty

 searchTree * makeEmpty( searchTree * T)
{
if( T != NULL)
{
makeEmpty( T -> left);
makeEmpty( T -> right);
delete (T); // 基准情况
}
return T;
}

2、Find

searchTree * find( elementType X , searchTree * T)
{
if( T = NULL)
return NULL; //非空判断 if(X < T->element)
return find (X , T->left);
else
if(X > T->element)
return find(X , T->right);
else
return T; //找到元素X
}

3、findMin  &&  findMax(举一例,(非)递归法,利用其排序性找到相应节点)

递归法:

searchTree * findMax(  searchTree * T)
{
if( T = NULL)
return NULL; //非空判断
else
if(T->right == NULL)
return T; //基准情况
else
return findMax(T->right);
}

非递归法:

searchTree * findMax(  searchTree * T)
{
if( T = NULL)
return NULL; //非空判断
else
while(T->right != NULL)
T = T->right;

return T;
}

4、insert

searchTree * insert( elementType X , searchTree * T)
{
if( T == NULL)
{
T = searchTree New(searchTree);
if(T == NULL)
cout << "out of space." << endl;
else
{
T->element = X;
T->left = T->right = NULL;
}
}
else
if(X < T->element)
T->left = insert(X , T->left);
else
if(X > T->element)
T->right = insert(X , T->right); return T;
}

5、delete

searchTree * delete( elementType X , searchTree * T)
{
      searchTree * tem;
tem = (searchTree *) New searchTree;
if( T == NULL)
return NULL;
else
if(X < T->element)
T->left = delete(X , T->left);
else
if(X > T->element)
T->right = delete(X , T->right);
else
if(T->left && T->right)
{
tem = findMin(T->right);
T->element = tem->element;
// tem = delete(tem->element , tem);
T->right = delete(T->element , T->right);
}
else
{
tem = T;
if(T->left == NULL)
T = T->right;
if(T->right == NULL)
T = T->left;
delete(tem);
}
return T;
}

三、AVL树

定义:每个节点的左子树和右子树的高度最多差1的二叉查找树。(空树的高度定义为-1)

插入后,只有那些从 插入点根节点 的路径上的节点的平衡可能被改变,所以沿着  插入点   回溯到  根节点的这条路径并更新平衡信息,就可以找到破坏AVL平衡条件的节点。

(第一个这样的节点 即破坏性节点中最深的节点)。

破坏平衡性的节点设为a,则a的左右子树高度差为2,新节点插入点:

1、a的左儿子的左子树(单旋转)

2、a的左儿子的右子树(双旋转)

3、a的右儿子的左子树(单旋转)

4、a的右儿子的右子树(双旋转)

1、节点声明

struct avlNode
{
elementType element;
avlNode left;
avlNode right;
int height;
}

2、高度信息

static int height( avlNode *P)
{
if( P == NULL)
return -; //基准情况
else
return max( height(P->left) , height(P->right) ) + ;
}

3、节点插入

avlTree *insert(elementType X , avlTree *T)
{
if(T == NULL)
{
T = (avlTree*) New avlTree;
if(T == NULL)
cout << "out of space" << endl;
else
{
T->element = X;
T->left = T->right = NULL;
}
}
else
if(X < T->element)
{
T->left = insert (X , T->left);
if(height(T->left) - height(T->right) == )
{
if(X < T->left->element)
T = singleRotateWithLeft(T);
else
T = doubleRotateWithLeft(T);
}
}
else
if(X > T->element)
{
T->right = insert (X , T->right);
if(height(T->right) - height(T->left) == )
{
if(X > T->right->element)
T = singleRotateWithRight(T);
else
T = doubleRotateWithRight(T);
}
}
T->height = height(T); //更新高度信息
return T;
}

4、旋转(给出一组单双旋转)

static avlTree *singleRotateWithLeft(avlTree *T1)
{
avlTree *T2;
T2 = T1->left; T1->left = T2->right;
T2->right = T1;
T1->height = height(T1); //更新高度信息
T2->height = height(T2); return T2;
}
static avlTree *doubleRotateWithLeft(avlTree *T1)
{
T1->left = singleRotateWithRight(T1->left);
// 在旋转中已经有返回值,此时不写return亦可
rerurn singleRotateWithLeft(T1);
}

四、树的遍历(递归)

中序遍历:左-中-右

后序遍历:左-右-中(先遍历儿子)

前序遍历:中-左-右(先遍历祖先)

中序遍历:

void printTree(searchTree *T)
{
if(T != NULL)
{
printTree(T->left);
cout<< T->element << endl;
printTree(T->right);
}
}

二叉树-二叉查找树-AVL树-遍历的更多相关文章

  1. 二叉树与AVL树

    二叉树 什么是二叉树? 父节点至多只有两个子树的树形结构成为二叉树.如下图所示,图1不是二叉树,图2是一棵二叉树. 图1 普通的树                                    ...

  2. 二叉树,AVL树和红黑树

    为了接下来能更好的学习TreeMap和TreeSet,讲解一下二叉树,AVL树和红黑树. 1. 二叉查找树 2. AVL树 2.1. 树旋转 2.1.1. 左旋和右旋 2.1.2. 左左,右右,左右, ...

  3. 006-数据结构-树形结构-二叉树、二叉查找树、平衡二叉查找树-AVL树

    一.概述 树其实就是不包含回路的连通无向图.树其实是范畴更广的图的特例. 树是一种数据结构,它是由n(n>=1)个有限节点组成一个具有层次关系的集合. 1.1.树的特性: 每个结点有零个或多个子 ...

  4. python常用算法(5)——树,二叉树与AVL树

    1,树 树是一种非常重要的非线性数据结构,直观的看,它是数据元素(在树中称为节点)按分支关系组织起来的结构,很像自然界中树那样.树结构在客观世界中广泛存在,如人类社会的族谱和各种社会组织机构都可用树形 ...

  5. 5分钟了解二叉树之AVL树

    转载请注明出处:https://www.cnblogs.com/morningli/p/16033733.html AVL树是带有平衡条件的二叉查找树,其每个节点的左子树和右子树的高度最多相差1.为了 ...

  6. 二叉树之AVL树

    高度为 h 的 AVL 树,节点数 N 最多2^h − 1: 最少N(h)=N(h− 1) +N(h− 2) + 1. 最少节点数n 如以斐波那契数列可以用数学归纳法证明: 即: N(0) = 0 ( ...

  7. 二叉树之AVL树的平衡实现(递归与非递归)

    这篇文章用来复习AVL的平衡操作,分别会介绍其旋转操作的递归与非递归实现,但是最终带有插入示例的版本会以递归呈现. 下面这张图绘制了需要旋转操作的8种情况.(我要给做这张图的兄弟一个赞)后面会给出这八 ...

  8. 面试题:什么叫平衡二叉查找树--AVL树

    查找.插入和删除在平均和最坏情况下都是O(log n) 增加和删除可能需要通过一次或多次树旋转来重新平衡这个树 节点的平衡因子是它的左子树的高度减去它的右子树的高度.带有平衡因子 1.0 或 -1 的 ...

  9. Avl树的基本操作(c语言实现)

    #include<stdio.h> #include<stdlib.h> typedef struct AvlNode *Position; typedef struct Av ...

随机推荐

  1. 用js 向h5 中的table 动态添加数据 (简单实现)

    //向 表格传值 function setTextareaValue(items,pp){ console.log(" 进入函数 items=="+items); var tb = ...

  2. js 获取系统当前时间

    JS获取当前的日期和时间的方法:var myDate = new Date();myDate.getYear(); //获取当前年份(2位)myDate.getFullYear(); //获取完整的年 ...

  3. 【HTML+CSS】七小时快速入门~~~~~~~

    由于网络化的原因,学习很方便,但是也由于太方便了,学习资料很多会给刚想要入门却没有什么自制力的初学者造成困难,我自己来说学html和css先看了一本书,后来又辗转在慕课网.w3cschool等学习网站 ...

  4. SpringMVC解析3-DispatcherServlet组件初始化

    在spring中,ContextLoaderListener只是辅助功能,用于创建WebApplicationContext类型实例,而真正的逻辑实现其实是在DispatcherServlet中进行的 ...

  5. jQuery回车键提交表单

    $(document).keyup(function(event) {     if(event.keyCode==13)     {         $('btnSubmit').trigger(& ...

  6. HDU4971 A simple brute force problem.(强连通分量缩点 + 最大权闭合子图)

    题目 Source http://acm.hdu.edu.cn/showproblem.php?pid=4971 Description There's a company with several ...

  7. HDU5727 Necklace(枚举 + 二分图最大匹配)

    题目大概说有n个yang珠子n个yin珠子,要交替串成一个环形项链,有些yang珠子和某个yin珠子相邻这个yang珠子会不高兴,问最少有几个yang珠子不高兴. 自然会想到直接用状压DP去解,转移很 ...

  8. oracle存储海量数据 设计方案

    日历基本活动表的数据有四千万条,在这些生产库业务中是小的了. 从三个方面提高效率: 1.sql语句 要绑定变量,sql语句书写规范这些,包括的就多了.主要目的就是提高数据库吞吐量及业务SQL响应时间. ...

  9. 每天一个Linux命令---tcpdump

    用简单的话来定义tcpdump,就是:dump the traffic on a network,根据使用者的定义对网络上的数据包进行截获的包分析工具. tcpdump可以将网络中传送的数据包的“头” ...

  10. Knockout.js初体验

    前不久在网上看到一个轻量级MVVM js类库叫Knockout.js,觉得很好奇,搜了一下Knockout.js相关资料,也初体验了一下,顿时感觉这个类库的设计很有意思.接下来就搞清楚什么是Knock ...