求最长回文子串 - leetcode 5. Longest Palindromic Substring
写在前面:忍不住吐槽几句今天上海的天气,次奥,鞋子里都能养鱼了...裤子也全湿了,衣服也全湿了,关键是这天气还打空调,只能瑟瑟发抖祈祷不要感冒了....
前后切了一百零几道leetcode的题(solution同步在github),主要是拣难度系数定为easy的水题做...好吧,这是第一道算法题。不知哪位大神说的,所有的语言都会过时,只有数据结构和算法才是永恒。
今天要重点讲的是优雅的Manacher算法
,先来看这道题Longest Palindromic Substring,题目很简单,给你一个字符串,找到最长的回文子串。啥叫回文串?就是前后看都一样的串,比如abcba
,abba
,因为题目给的数据量不大(1000),所以可以枚举字符串的每个位置当做回文对称点,回文对称点是我给它的一个概念,比如abcba
的回文对称点就是idx=2也就是c的位置。But!并不是每个回文串都有对称点,比如abba
,只有对称轴,它就没有点!怎么办?机智的coder想出了一个简单的用空间换取代码实现复杂度的方法,这也是Manacher算法的第一步:
abcba -> #a#b#c#b#a#
abba -> #a#b#b#a#
这么一来,每个回文串就都有回文对称点了(可能是字母,也可能是#)。之后我们就能枚举对称点,然后向两边扩散开去,比较字符是否一样。为了不用判断是否已经到了边界,我们最初在字符串的开头再加个字符*
,只要该字符和#
以及字符串里其他字符都不一致即可。这样是可以AC的,虽然复杂度达到了O(n^2)。接下去我们介绍复杂度为O(n)的Manacher算法。
我们试着以字符串babcbade
举例,首先把字符串像上面一样变形:
babcbade -> *#b#a#b#c#b#a#d#e#
然后我们设置一个dp数组,dp[i]表示以变形后第i个元素为对称点的最长回文子串的半径,同样以上面的字符串举例,可以得到dp数组:
*#b#a#b#c#b#a#d#e#
112121216121212121
我们可以很容易地发现,要求的最长回文子串的长度即dp数组最大值减去1。于是如何快速地求得该数组成为关键。假设我们已经得到了dp[6]的值,dp[10]的初始值也不难确定,因为它们两个元素根据idx=8对称(#a#b#c#b#a#),所以可以不用从1开始向两边扩散了。
我们用maxn
维护当前存在的回文子串能达到最右的位置+1(maxn位置不可达到),用idx
维护当前能到达最右+1的回文子串的回文中心点位置,实现该dp数组求值的核心代码如下:
for (var i = 1, len = str.length; i < len; i++) {
if (maxn > i) dp[i] = Math.min(dp[2 * idx - i], maxn - i);
else dp[i] = 1;
while (str[i - dp[i]] === str[i + dp[i]]) dp[i]++;
if (dp[i] + i > maxn)
maxn = dp[i] + i, idx = i;
}
完整的AC代码:
// return the Longest Palindromic Substring of s
function Manacher(s) {
var str = '*#'
, dp = []
, maxn = 0
, idx = 0;
for (var i = 0, len = s.length; i < len; i++)
str += s[i] + '#';
for (var i = 1, len = str.length; i < len; i++) {
if (maxn > i) dp[i] = Math.min(dp[2 * idx - i], maxn - i);
else dp[i] = 1;
while (str[i - dp[i]] === str[i + dp[i]]) dp[i]++;
if (dp[i] + i > maxn)
maxn = dp[i] + i, idx = i;
}
var ans = 0
, pos;
for (var i = 1; i < len; i++) {
if (dp[i] > ans)
ans = dp[i], pos = i;
}
var f = str[pos] === '#'
, tmp = f ? '' : str[pos]
, startPos = f ? pos + 1 : pos + 2
, endPos = f ? dp[pos] - 3 + startPos : dp[pos] - 4 + startPos;
for (var i = startPos; i <= endPos; i += 2)
tmp = str[i] + tmp + str[i];
return tmp;
}
var longestPalindrome = function(s) {
var str = Manacher(s);
return str;
};
求最长回文子串 - leetcode 5. Longest Palindromic Substring的更多相关文章
- 最长回文子串-LeetCode 5 Longest Palindromic Substring
题目描述 Given a string S, find the longest palindromic substring in S. You may assume that the maximum ...
- hdu 3068 最长回文(manachar求最长回文子串)
题目连接:hdu 3068 最长回文 解题思路:通过manachar算法求最长回文子串,如果用遍历的话绝对超时. #include <stdio.h> #include <strin ...
- PAT甲题题解-1040. Longest Symmetric String (25)-求最长回文子串
博主欢迎转载,但请给出本文链接,我尊重你,你尊重我,谢谢~http://www.cnblogs.com/chenxiwenruo/p/6789177.html特别不喜欢那些随便转载别人的原创文章又不给 ...
- Manacher模板( 线性求最长回文子串 )
模板 #include<stdio.h> #include<string.h> #include<algorithm> #include<map> us ...
- 求最长回文子串:Manacher算法
主要学习自:http://articles.leetcode.com/2011/11/longest-palindromic-substring-part-ii.html 问题描述:回文字符串就是左右 ...
- 后缀数组 - 求最长回文子串 + 模板题 --- ural 1297
1297. Palindrome Time Limit: 1.0 secondMemory Limit: 16 MB The “U.S. Robots” HQ has just received a ...
- Manacher算法 O(n) 求最长回文子串
转自:http://bbs.dlut.edu.cn/bbstcon.php?board=Competition&gid=23474 其实原文说得是比较清楚的,只是英文的,我这里写一份中文的吧. ...
- Manacher算法——求最长回文子串
首先,得先了解什么是回文串.回文串就是正反读起来就是一样的,如“abcdcba”.我们要是直接采用暴力方法来查找最长回文子串,时间复杂度为O(n^3),好一点的方法是枚举每一个字符,比较较它左右距离相 ...
- manacher算法求最长回文子串
一:背景 给定一个字符串,求出其最长回文子串.例如: s="abcd",最长回文长度为 1: s="ababa",最长回文长度为 5: s="abcc ...
随机推荐
- 开启Tomcat 源码调试
开启Tomcat 源码调试 因为工作的原因,需要了解Tomcat整个架构是如何设计的,正如要使用Spring MVC进行Web开发,需要了解Spring是如何设计的一样,有哪些主要的类,分别是用于干什 ...
- 查看Android支持的硬解码信息
通过/system/etc/media_codecs.xml可以确定当前设备支持哪些硬解码.通过/system/etc/media_profiles.xml可以知道设备支持的具体profile和lev ...
- C++类成员函数的重载、覆盖和隐藏区别?
C++类成员函数的重载.覆盖和隐藏区别? a.成员函数被重载的特征:(1)相同的范围(在同一个类中):(2)函数名字相同:(3)参数不同:(4)virtual 关键字可有可无.b.覆盖是指派生类函数覆 ...
- web报表工具FineReport常用函数的用法总结(报表函数)
说明:本次总结中,凡是以tableName或viewName作为参数因子的.函数在调用的时候均按照先从私有数据源中查找,然后再从公有数据源中查找的顺序. CLASS CLASS(object):返回o ...
- Windows Azure Redis 缓存服务
8月20日,Windows Azure (中国版)开始提供Redis缓存服务,比较国际版的Microsoft Azure晚了差不多一年的时间.说实话,微软真不应该将这个重要的功能delay这么长时间, ...
- 用PS设计等高线效果的背景图片
有些简单的单网页,如果利用等高线效果的背景图片,再配合合适的背景色,能达到绚丽的效果.如下图所示: 本文就介绍该等高线效果的背景图片是如何制作的.Follow Me!!!! 1.新建文档,尺寸:100 ...
- HTML标签----图文详解(二)
HTML标签超详细的图文演示再来一波~~~ 如果还没有看过昨天的福利的,那可要抓紧喽,传送门:HTML标签----图文详解 本文主要内容 列表标签 表格标签 框架标签及内嵌框架<iframe&g ...
- AC日记——数字统计 openjudge 1.5 41
41:数字统计 总时间限制: 1000ms 内存限制: 65536kB 描述 请统计某个给定范围[L, R]的所有整数中,数字2出现的次数. 比如给定范围[2, 22],数字2在数2中出现了1次, ...
- maven-安装配置
Maven是基于项目对象模型(POM),可以通过一小段描述信息来管理项目的构建,报告和文档的软件项目管理工具. maven是什么maven这个词可以翻译为“知识的积累”,也可以翻译为“专家”或“内行” ...
- vijos[1355]车队过桥问题
描述 现有N辆车要按顺序通过一个单向的小桥,由于小桥太窄,不能有两辆车并排通过.另外,由于小桥建造的时间已经很久,只能承受有限的重量,记为Max(吨).管理员将N辆车按初始的顺序分组,每次让一个组过桥 ...