写在前面:忍不住吐槽几句今天上海的天气,次奥,鞋子里都能养鱼了...裤子也全湿了,衣服也全湿了,关键是这天气还打空调,只能瑟瑟发抖祈祷不要感冒了....

前后切了一百零几道leetcode的题(solution同步在github),主要是拣难度系数定为easy的水题做...好吧,这是第一道算法题。不知哪位大神说的,所有的语言都会过时,只有数据结构和算法才是永恒。

今天要重点讲的是优雅的Manacher算法,先来看这道题Longest Palindromic Substring,题目很简单,给你一个字符串,找到最长的回文子串。啥叫回文串?就是前后看都一样的串,比如abcbaabba,因为题目给的数据量不大(1000),所以可以枚举字符串的每个位置当做回文对称点,回文对称点是我给它的一个概念,比如abcba的回文对称点就是idx=2也就是c的位置。But!并不是每个回文串都有对称点,比如abba,只有对称轴,它就没有点!怎么办?机智的coder想出了一个简单的用空间换取代码实现复杂度的方法,这也是Manacher算法的第一步:

abcba -> #a#b#c#b#a#
abba  -> #a#b#b#a#

这么一来,每个回文串就都有回文对称点了(可能是字母,也可能是#)。之后我们就能枚举对称点,然后向两边扩散开去,比较字符是否一样。为了不用判断是否已经到了边界,我们最初在字符串的开头再加个字符*,只要该字符和#以及字符串里其他字符都不一致即可。这样是可以AC的,虽然复杂度达到了O(n^2)。接下去我们介绍复杂度为O(n)的Manacher算法。

我们试着以字符串babcbade举例,首先把字符串像上面一样变形:

babcbade -> *#b#a#b#c#b#a#d#e#

然后我们设置一个dp数组,dp[i]表示以变形后第i个元素为对称点的最长回文子串的半径,同样以上面的字符串举例,可以得到dp数组:

*#b#a#b#c#b#a#d#e#
112121216121212121

我们可以很容易地发现,要求的最长回文子串的长度即dp数组最大值减去1。于是如何快速地求得该数组成为关键。假设我们已经得到了dp[6]的值,dp[10]的初始值也不难确定,因为它们两个元素根据idx=8对称(#a#b#c#b#a#),所以可以不用从1开始向两边扩散了。

我们用maxn维护当前存在的回文子串能达到最右的位置+1(maxn位置不可达到),用idx维护当前能到达最右+1的回文子串的回文中心点位置,实现该dp数组求值的核心代码如下:

for (var i = 1, len = str.length; i < len; i++) {
  if (maxn > i) dp[i] = Math.min(dp[2 * idx - i], maxn - i);
  else dp[i] = 1;

  while (str[i - dp[i]] === str[i + dp[i]]) dp[i]++;

  if (dp[i] + i > maxn)
    maxn = dp[i] + i, idx = i;
}

完整的AC代码:

// return the Longest Palindromic Substring of s
function Manacher(s) {
  var str = '*#'
    , dp = []
    , maxn = 0
    , idx = 0;

  for (var i = 0, len = s.length; i < len; i++)
    str += s[i] + '#';

  for (var i = 1, len = str.length; i < len; i++) {
    if (maxn > i) dp[i] = Math.min(dp[2 * idx - i], maxn - i);
    else dp[i] = 1;

    while (str[i - dp[i]] === str[i + dp[i]]) dp[i]++;

    if (dp[i] + i > maxn)
      maxn = dp[i] + i, idx = i;
  }

  var ans = 0
    , pos;

  for (var i = 1; i < len; i++) {
    if (dp[i] > ans)
      ans = dp[i], pos = i;
  }

  var f = str[pos] === '#'
    , tmp = f ? '' : str[pos]
    , startPos = f ? pos + 1 : pos + 2
    , endPos = f ? dp[pos] - 3 + startPos : dp[pos] - 4 + startPos;

  for (var i = startPos; i <= endPos; i += 2)
    tmp = str[i] + tmp + str[i];

  return tmp;
}

var longestPalindrome = function(s) {
  var str = Manacher(s);
  return str;
};

求最长回文子串 - leetcode 5. Longest Palindromic Substring的更多相关文章

  1. 最长回文子串-LeetCode 5 Longest Palindromic Substring

    题目描述 Given a string S, find the longest palindromic substring in S. You may assume that the maximum ...

  2. hdu 3068 最长回文(manachar求最长回文子串)

    题目连接:hdu 3068 最长回文 解题思路:通过manachar算法求最长回文子串,如果用遍历的话绝对超时. #include <stdio.h> #include <strin ...

  3. PAT甲题题解-1040. Longest Symmetric String (25)-求最长回文子串

    博主欢迎转载,但请给出本文链接,我尊重你,你尊重我,谢谢~http://www.cnblogs.com/chenxiwenruo/p/6789177.html特别不喜欢那些随便转载别人的原创文章又不给 ...

  4. Manacher模板( 线性求最长回文子串 )

    模板 #include<stdio.h> #include<string.h> #include<algorithm> #include<map> us ...

  5. 求最长回文子串:Manacher算法

    主要学习自:http://articles.leetcode.com/2011/11/longest-palindromic-substring-part-ii.html 问题描述:回文字符串就是左右 ...

  6. 后缀数组 - 求最长回文子串 + 模板题 --- ural 1297

    1297. Palindrome Time Limit: 1.0 secondMemory Limit: 16 MB The “U.S. Robots” HQ has just received a ...

  7. Manacher算法 O(n) 求最长回文子串

    转自:http://bbs.dlut.edu.cn/bbstcon.php?board=Competition&gid=23474 其实原文说得是比较清楚的,只是英文的,我这里写一份中文的吧. ...

  8. Manacher算法——求最长回文子串

    首先,得先了解什么是回文串.回文串就是正反读起来就是一样的,如“abcdcba”.我们要是直接采用暴力方法来查找最长回文子串,时间复杂度为O(n^3),好一点的方法是枚举每一个字符,比较较它左右距离相 ...

  9. manacher算法求最长回文子串

    一:背景 给定一个字符串,求出其最长回文子串.例如: s="abcd",最长回文长度为 1: s="ababa",最长回文长度为 5: s="abcc ...

随机推荐

  1. 在MVC中使用Json.Net序列化和反序列化Json对象

    在.Net的MVC开发中,经常会使用到Json对象,于是,系统提供了JsonResult这个对象,其本质是调用.Net系统自带的Json序列化类JavaScriptSerializer对数据对象进行序 ...

  2. HBase应用开发回顾与总结系列之二:RowKey行键设计规范

    2. RowKey行键设计规范 2.1. RowKey四大特性 2.1.1 字符串类型 虽然行键在HBase中是以byte[]字节数组的形式存储的,但是建议在系统开发过程中将其数据类型设置为Strin ...

  3. java.sql.SQLException: [Microsoft][ODBC 驱动程序管理器] 在指定的 DSN 中,驱动程序和应用程序之间的体系结构不匹配

    今天把sql server 2008 r2装了起来,64位的,然后就迫不及待地体验连接数据库的操作,编程语言是java.我一开始学了一种非常老的连接方式,使用JDBC-ODBC桥.初次使用不太熟练,所 ...

  4. java汉化

    http://download.eclipse.org/technology/babel/babel_language_packs/R0.13.0/luna/luna.php _x86_64版本下载地 ...

  5. linux 通过scp 复制备份恢复mysql数据表

    最近客户有个需求,小弟对于运维的东西也是半瓶醋,所以就果断的摸索了下.折磨了一个晚上终于算是搞定了.因为是两个不同的服务器,本来想用ftp,无奈小弟不是很熟悉,所以就用了scp,但是scp有个问题就是 ...

  6. 动手学习TCP:总结和索引

    TCP是一个十分复杂的协议,通过前面几篇文章只涉及了TCP协议中一些基本的概念. 虽然说都是一些TCP最基本的概念,但是试验过程中一直在踩坑,例如:TCP flag设置错误,seq.ack号没有计算正 ...

  7. [转]菜鸟程序员之Asp.net MVC Session过期异常的处理

    本文转自:http://www.cnblogs.com/JustRun1983/p/3377652.html 小赵是刚毕业的计算机专业方面的大学生,4年的大学时间里面,他读过了很多编程方面的数据,也动 ...

  8. MMORPG大型游戏设计与开发(part1 of net)

    网络模块的设计,是大型多人在线游戏中比较重要的一部分.我之所以将网络模块放到最前面,是因为许许多多的开发者面对这一块的时候充满了疑惑,而且也觉得很神秘和深奥.这些我们面对到的困难,其实是由于我们对这方 ...

  9. Stanford coursera Andrew Ng 机器学习课程编程作业(Exercise 1)

    Exercise 1:Linear Regression---实现一个线性回归 在本次练习中,需要实现一个单变量的线性回归.假设有一组历史数据<城市人口,开店利润>,现需要预测在哪个城市中 ...

  10. POJ 1696 Space Ant 【极角排序】

    题意:平面上有n个点,一只蚂蚁从最左下角的点出发,只能往逆时针方向走,走过的路线不能交叉,问最多能经过多少个点. 思路:每次都尽量往最外边走,每选取一个点后对剩余的点进行极角排序.(n个点必定能走完, ...