Leetcode: Can I Win
In the "100 game," two players take turns adding, to a running total, any integer from 1..10. The player who first causes the running total to reach or exceed 100 wins. What if we change the game so that players cannot re-use integers? For example, two players might take turns drawing from a common pool of numbers of 1..15 without replacement until they reach a total >= 100. Given an integer maxChoosableInteger and another integer desiredTotal, determine if the first player to move can force a win, assuming both players play optimally. You can always assume that maxChoosableInteger will not be larger than 20 and desiredTotal will not be larger than 300. Example Input:
maxChoosableInteger = 10
desiredTotal = 11 Output:
false Explanation:
No matter which integer the first player choose, the first player will lose.
The first player can choose an integer from 1 up to 10.
If the first player choose 1, the second player can only choose integers from 2 up to 10.
The second player will win by choosing 10 and get a total = 11, which is >= desiredTotal.
Same with other integers chosen by the first player, the second player will always win.
refer to https://discuss.leetcode.com/topic/68896/java-solution-using-hashmap-with-detailed-explanation
After solving several "Game Playing" questions in leetcode, I find them to be pretty similar. Most of them can be solved using the top-down DP approach, which "brute-forcely" simulates every possible state of the game.
The key part for the top-down dp strategy is that we need to avoid repeatedly solving sub-problems. Instead, we should use some strategy to "remember" the outcome of sub-problems. Then when we see them again, we instantly know their result. By doing this, we can always reduce time complexity from exponential to polynomial.
(EDIT: Thanks for @billbirdh for pointing out the mistake here. For this problem, by applying the memo, we at most compute for every subproblem once, and there are O(2^n) subproblems, so the complexity is O(2^n) after memorization. (Without memo, time complexity should be like O(n!))
For this question, the key part is: what is the state of the game? Intuitively, to uniquely determine the result of any state, we need to know:
- The unchosen numbers
- The remaining desiredTotal to reach
A second thought reveals that 1) and 2) are actually related because we can always get the 2) by deducting the sum of chosen numbers from original desiredTotal.
Then the problem becomes how to describes the state using 1).
In my solution, I use a boolean array to denote which numbers have been chosen, and then a question comes to mind, if we want to use a Hashmap to remember the outcome of sub-problems, can we just use Map<boolean[], Boolean> ? Obviously we cannot, because the if we use boolean[] as a key, the reference to boolean[] won't reveal the actual content in boolean[].
Since in the problem statement, it says maxChoosableInteger will not be larger than 20, which means the length of our boolean[] array will be less than 20. Then we can use an Integer to represent this boolean[] array. How?
Say the boolean[] is {false, false, true, true, false}, then we can transfer it to an Integer with binary representation as 00110. Since Integer is a perfect choice to be the key of HashMap, then we now can "memorize" the sub-problems using Map<Integer, Boolean>.
The rest part of the solution is just simulating the game process using the top-down dp.
他的code精妙之处在于:
1. HashMap的key是由boolean array encode生成的,直接用一个array作hashmap的key是不行的,HashMap fails to get the keys when a different array is passed as key, although the elements are same. (As they are different objects). 感觉用object作key都会有这个问题,除非是同一个object,否则仅仅值相等并不指引正确的位置。所以作者在这里encode成了primative type
2. 14行的结束条件。我曾经想过维护TreeSet, treeset.ceiling(desired) != null表示存在大于desired的unused elem, 则return true; 或者维护一个hashset visited, 然后扫描一遍return true; 这些方法都不如作者的这个来的简洁
3. 22行,我写的时候没有把visited reset为false
public class Solution {
HashMap<Integer, Boolean> map;
boolean[] visited;
public boolean canIWin(int maxChoosableInteger, int desiredTotal) {
int sum = (1+maxChoosableInteger)*maxChoosableInteger/2;
if (sum < desiredTotal) return false;
if (desiredTotal <= 0) return true;
map = new HashMap<Integer, Boolean>();
visited = new boolean[maxChoosableInteger+1];
return helper(desiredTotal);
}
public boolean helper(int desired) {
if (desired <= 0) return false; //base case, means the player played last time already reach the desired total, so the current player has no chance to win
int key = calcKey(visited);
if (map.containsKey(key)) return map.get(key);
else {
for (int i=1; i<visited.length; i++) {
if (!visited[i]) {
visited[i] = true;
if (!helper(desired-i)) {
visited[i] = false;
map.put(key, true);
return true;
}
visited[i] = false;
}
}
map.put(key, false);
return false;
}
}
public int calcKey(boolean[] visited) {
int res = 0;
for (int i=0; i<visited.length; i++) {
if (visited[i]) {
res |= 1;
}
res = res << 1;
}
return res;
}
}
Solution 2: 我的backtracking做法,TLE了,但是思路应该还可以, 用的是treeSet,用来表示还可以使用的数,之所以这样做是因为当时只想到return true的base case。不过我的方法好处是不用visited数组
public class Solution {
public boolean canIWin(int maxChoosableInteger, int desiredTotal) {
int sum = (1+maxChoosableInteger)*maxChoosableInteger/2;
if(sum < desiredTotal) return false;
if(desiredTotal <= 0) return true;
TreeSet<Integer> set = new TreeSet<Integer>();
for (int i=1; i<=maxChoosableInteger; i++) {
set.add(i);
}
return canWin(set, maxChoosableInteger, desiredTotal);
}
public boolean canWin(TreeSet<Integer> set, int max, int desired) {
if (set.ceiling(desired) != null) {
return true;
}
for (int num=1; num<=max; num++) {
if (!set.contains(num)) continue;
set.remove(num);
if (!canWin(set, max, desired-num)) {
set.add(num);
return true;
}
set.add(num);
}
return false;
}
}
Leetcode: Can I Win的更多相关文章
- [LeetCode] Can I Win 我能赢吗
In the "100 game," two players take turns adding, to a running total, any integer from 1.. ...
- 状态压缩 - LeetCode #464 Can I Win
动态规划是一种top-down求解模式,关键在于分解和求解子问题,然后根据子问题的解不断向上递推,得出最终解 因此dp涉及到保存每个计算过的子问题的解,这样当遇到同样的子问题时就不用继续向下求解而直接 ...
- [LeetCode] 464. Can I Win 我能赢吗
In the "100 game," two players take turns adding, to a running total, any integer from 1.. ...
- LeetCode 464. Can I Win
In the "100 game," two players take turns adding, to a running total, any integer from 1.. ...
- [leetcode] 464. Can I Win (Medium)
原题链接 两个人依次从1~maxNum中选取数字(不可重复选取同一个),累和.当一方选取数字累和后结果大于等于给定的目标数字,则此人胜利. 题目给一个maxNum和targetNum,要求判断先手能否 ...
- LeetCode All in One 题目讲解汇总(持续更新中...)
终于将LeetCode的免费题刷完了,真是漫长的第一遍啊,估计很多题都忘的差不多了,这次开个题目汇总贴,并附上每道题目的解题连接,方便之后查阅吧~ 477 Total Hamming Distance ...
- [LeetCode] Guess Number Higher or Lower II 猜数字大小之二
We are playing the Guess Game. The game is as follows: I pick a number from 1 to n. You have to gues ...
- [LeetCode] Flip Game 翻转游戏之二
You are playing the following Flip Game with your friend: Given a string that contains only these tw ...
- [LeetCode] Nim Game 尼姆游戏
You are playing the following Nim Game with your friend: There is a heap of stones on the table, eac ...
随机推荐
- Android -- ProgressBar(进度条的使用)
我们在开发程序是经常会需要软件全屏显示.自定义标题(使用按钮等控件)和其他的需求,今天这一讲就是如何控制Android应用程序的窗体显示. requestWindowFeature可以设置的值有:(具 ...
- iOS 获取UIView 动画的实时位置的方法
[self.animationView.layer.presentationLayer frame].origin.x
- 最好的文本框样式 最漂亮的文本框样式 textbox css样式
输入框景背景透明: <input style="background:transparent;border:1px solid #ffffff"> 鼠标划过输入框,输入 ...
- 深入C#判断操作系统类型的总结详解(转载)
Windows操作系统的版本号一览 操作系统 PlatformID 主版本号 副版本号 Windows95 1 4 0 Windows98 1 4 10 WindowsMe ...
- 推荐几本 Javascript 书籍
初级读物: <JavaScript高级程序设计>:一本非常完整的经典入门书籍,被誉为JavaScript圣经之一,详解的非常详细,最新版第三版已经发布了,建议购买. <J ...
- Python中的socket 模块
Python 提供了两个基本的 socket 模块.第一个是 Socket,它提供了标准的 BSD Sockets API.第二个是 SocketServer, 它提供了服务器中心类,可以简化网络服务 ...
- uploadify 自动访问url 初始化 自动请求
摘要: uploadify 自动请求url, 初始化时自动请求url解决方法. 项目中使用了uploadify 上传图片,当访问到上传页面url,uploadify初始化时再一次访问该url 当我在配 ...
- Qt 控件随窗口缩放
在Qt的界面设计中,我们有时候希望窗口在最大化的时候,上面的控件也跟着缩放,那么我们就需要调整控件的SizePolicy属性,关于这个属性的讲解请参见我之前的博客Qt SizePolicy 属性,由于 ...
- hao123列表的实现
<!DOCTYPE html><html><head> <meta http-equiv="Content-Type" co ...
- JS 比较日期相隔都少天&& 比较两个日期大小&&指定日期往前后推指定天数
//这些天常接触到有关于js操作日期事 就小结了一下,希望对你有帮助 function conversionDate(a,b){ var start =a.split('-'); var end = ...