In the "100 game," two players take turns adding, to a running total, any integer from 1..10. The player who first causes the running total to reach or exceed 100 wins.

What if we change the game so that players cannot re-use integers?

For example, two players might take turns drawing from a common pool of numbers of 1..15 without replacement until they reach a total >= 100.

Given an integer maxChoosableInteger and another integer desiredTotal, determine if the first player to move can force a win, assuming both players play optimally.

You can always assume that maxChoosableInteger will not be larger than 20 and desiredTotal will not be larger than 300.

Example

Input:
maxChoosableInteger = 10
desiredTotal = 11 Output:
false Explanation:
No matter which integer the first player choose, the first player will lose.
The first player can choose an integer from 1 up to 10.
If the first player choose 1, the second player can only choose integers from 2 up to 10.
The second player will win by choosing 10 and get a total = 11, which is >= desiredTotal.
Same with other integers chosen by the first player, the second player will always win.

refer to https://discuss.leetcode.com/topic/68896/java-solution-using-hashmap-with-detailed-explanation

After solving several "Game Playing" questions in leetcode, I find them to be pretty similar. Most of them can be solved using the top-down DP approach, which "brute-forcely" simulates every possible state of the game.

The key part for the top-down dp strategy is that we need to avoid repeatedly solving sub-problems. Instead, we should use some strategy to "remember" the outcome of sub-problems. Then when we see them again, we instantly know their result. By doing this, we can always reduce time complexity from exponential to polynomial.
(EDIT: Thanks for @billbirdh for pointing out the mistake here. For this problem, by applying the memo, we at most compute for every subproblem once, and there are O(2^n) subproblems, so the complexity is O(2^n) after memorization. (Without memo, time complexity should be like O(n!))

For this question, the key part is: what is the state of the game? Intuitively, to uniquely determine the result of any state, we need to know:

  1. The unchosen numbers
  2. The remaining desiredTotal to reach

A second thought reveals that 1) and 2) are actually related because we can always get the 2) by deducting the sum of chosen numbers from original desiredTotal.

Then the problem becomes how to describes the state using 1).

In my solution, I use a boolean array to denote which numbers have been chosen, and then a question comes to mind, if we want to use a Hashmap to remember the outcome of sub-problems, can we just use Map<boolean[], Boolean> ? Obviously we cannot, because the if we use boolean[] as a key, the reference to boolean[] won't reveal the actual content in boolean[].

Since in the problem statement, it says maxChoosableInteger will not be larger than 20, which means the length of our boolean[] array will be less than 20. Then we can use an Integer to represent this boolean[] array. How?

Say the boolean[] is {false, false, true, true, false}, then we can transfer it to an Integer with binary representation as 00110. Since Integer is a perfect choice to be the key of HashMap, then we now can "memorize" the sub-problems using Map<Integer, Boolean>.

The rest part of the solution is just simulating the game process using the top-down dp.

他的code精妙之处在于:

1. HashMap的key是由boolean array encode生成的,直接用一个array作hashmap的key是不行的,HashMap fails to get the keys when a different array is passed as key, although the elements are same. (As they are different objects). 感觉用object作key都会有这个问题,除非是同一个object,否则仅仅值相等并不指引正确的位置。所以作者在这里encode成了primative type

2. 14行的结束条件。我曾经想过维护TreeSet, treeset.ceiling(desired) != null表示存在大于desired的unused elem, 则return true; 或者维护一个hashset visited, 然后扫描一遍return true; 这些方法都不如作者的这个来的简洁

3. 22行,我写的时候没有把visited reset为false

 public class Solution {
HashMap<Integer, Boolean> map;
boolean[] visited;
public boolean canIWin(int maxChoosableInteger, int desiredTotal) {
int sum = (1+maxChoosableInteger)*maxChoosableInteger/2;
if (sum < desiredTotal) return false;
if (desiredTotal <= 0) return true;
map = new HashMap<Integer, Boolean>();
visited = new boolean[maxChoosableInteger+1];
return helper(desiredTotal);
} public boolean helper(int desired) {
if (desired <= 0) return false; //base case, means the player played last time already reach the desired total, so the current player has no chance to win
int key = calcKey(visited);
if (map.containsKey(key)) return map.get(key);
else {
for (int i=1; i<visited.length; i++) {
if (!visited[i]) {
visited[i] = true;
if (!helper(desired-i)) {
visited[i] = false;
map.put(key, true);
return true;
}
visited[i] = false;
}
}
map.put(key, false);
return false;
}
} public int calcKey(boolean[] visited) {
int res = 0;
for (int i=0; i<visited.length; i++) {
if (visited[i]) {
res |= 1;
}
res = res << 1;
}
return res;
}
}

Solution 2: 我的backtracking做法,TLE了,但是思路应该还可以, 用的是treeSet,用来表示还可以使用的数,之所以这样做是因为当时只想到return true的base case。不过我的方法好处是不用visited数组

 public class Solution {
public boolean canIWin(int maxChoosableInteger, int desiredTotal) {
int sum = (1+maxChoosableInteger)*maxChoosableInteger/2;
if(sum < desiredTotal) return false;
if(desiredTotal <= 0) return true; TreeSet<Integer> set = new TreeSet<Integer>();
for (int i=1; i<=maxChoosableInteger; i++) {
set.add(i);
}
return canWin(set, maxChoosableInteger, desiredTotal);
} public boolean canWin(TreeSet<Integer> set, int max, int desired) {
if (set.ceiling(desired) != null) {
return true;
}
for (int num=1; num<=max; num++) {
if (!set.contains(num)) continue;
set.remove(num);
if (!canWin(set, max, desired-num)) {
set.add(num);
return true;
}
set.add(num);
}
return false;
}
}

Leetcode: Can I Win的更多相关文章

  1. [LeetCode] Can I Win 我能赢吗

    In the "100 game," two players take turns adding, to a running total, any integer from 1.. ...

  2. 状态压缩 - LeetCode #464 Can I Win

    动态规划是一种top-down求解模式,关键在于分解和求解子问题,然后根据子问题的解不断向上递推,得出最终解 因此dp涉及到保存每个计算过的子问题的解,这样当遇到同样的子问题时就不用继续向下求解而直接 ...

  3. [LeetCode] 464. Can I Win 我能赢吗

    In the "100 game," two players take turns adding, to a running total, any integer from 1.. ...

  4. LeetCode 464. Can I Win

    In the "100 game," two players take turns adding, to a running total, any integer from 1.. ...

  5. [leetcode] 464. Can I Win (Medium)

    原题链接 两个人依次从1~maxNum中选取数字(不可重复选取同一个),累和.当一方选取数字累和后结果大于等于给定的目标数字,则此人胜利. 题目给一个maxNum和targetNum,要求判断先手能否 ...

  6. LeetCode All in One 题目讲解汇总(持续更新中...)

    终于将LeetCode的免费题刷完了,真是漫长的第一遍啊,估计很多题都忘的差不多了,这次开个题目汇总贴,并附上每道题目的解题连接,方便之后查阅吧~ 477 Total Hamming Distance ...

  7. [LeetCode] Guess Number Higher or Lower II 猜数字大小之二

    We are playing the Guess Game. The game is as follows: I pick a number from 1 to n. You have to gues ...

  8. [LeetCode] Flip Game 翻转游戏之二

    You are playing the following Flip Game with your friend: Given a string that contains only these tw ...

  9. [LeetCode] Nim Game 尼姆游戏

    You are playing the following Nim Game with your friend: There is a heap of stones on the table, eac ...

随机推荐

  1. 【BZOJ1968】【AHoi2005】COMMON约数研究

    Description Input 只有一行一个整数 N(0 < N < 1000000). Output 只有一行输出,为整数M,即f(1)到f(N)的累加和. Sample Input ...

  2. 升级到EF6 两个注意事项

    1.依据MSDN的官方描述: In previous versions of EF the code was split between core libraries (primarily Syste ...

  3. 定时器的fireDate指的是触发时间

    1.定时器开启后,会在经过设定的时间间隔后才会执行第一次定时操作.而不是立马开启. NSTimer *timer = [NSTimer scheduledTimerWithTimeInterval: ...

  4. 使用C#将HTML文本转换为普通文本,去掉所有的Html标记(转)

    using System; using System.Collections.Generic; using System.Linq; using System.Text; //首先需要导入命名空间 u ...

  5. 纪念逝去的岁月——C/C++快速排序

    快速排序 代码 #include <stdio.h> void printList(int iList[], int iLen) { ; ; i < iLen; i++) { pri ...

  6. 使用 Eclipse C/C++ Development Toolkit 开发应用程序

    使用 Eclipse C/C++ Development Toolkit 开发应用程序 (转) 来自http://blog.csdn.net/favory/article/details/189080 ...

  7. Spring.Net 配置文件

    方法一. 直接在程序配置文件中配置 <configuration> <configSections> <sectionGroup name="spring&qu ...

  8. spring security使用数据库资源

    国内对权限系统的基本要求是将用户权限和被保护资源都放在数据库里进行管理,在这点上Spring Security并没有给出官方的解决方案,为此我们需要对Spring Security进行扩展.. 数据库 ...

  9. 求最大连续bit数

    描述 功能: 求一个byte数字对应的二进制数字中1的最大连续数,例如3的二进制为00000011,最大连续2个1    输入: 一个byte型的数字    输出: 无     返回: 对应的二进制数 ...

  10. 应该掌握的MySQL命令、MySQL语句

    一.MySQL常用的命令: 1. 连接数据库:mysql>mysql -uroot -p回车,再输入密码   mysql -h 192.168.0.200 -P 3306 -u root -p2 ...