course link: https://class.coursera.org/fmri1-001

Part 1 

❤ Three fundmental goals in fMRI:

localization (brain mapping approach: task comparison, brain-behavior correlation, information-based mapping);

connectivity (functional connectivity (seed-based), effectivity connectivity (DCM), multivariate connectivity (ICA, PCA, graph theory));

prediction (use the brain activities to predict something such as behavior)

❤ fMRI data structure:

TR: temporal resolution

Sturctural images:T1, WM<GM<CSF (longitudinal relaxation)

Functional images: T2* images

T2: teanscerse reliaxation

❤ fmri data structure

Field of view (FOV): to what extent of view in each direction we can see the brain

Slice thickness

eg. If the FOC is 192 mm, matrix size is 64 mm (the area of each slice), the slice thickness is 3 mm, then voxel size: 192mm (FOV)/64 (matrix size)*3 (slice thickness) = 3*3*3 mm voxel size (the last 3 means slice thickness)

hierarchy: Experiment-subjects-session-run-volume-slice-voxel

❤ Statistical map: the colors indicate reliable, non-zero effects

❤ Reverse inference: observed brain actives -> the feeling

One fallacy: if P->Q, Q, therefore P (true only if P is the only factor leads to Q)

❤ For regional brain activation to have high positive predictive value:

- It must respond consistently to the task/state (high sentivitivity);

- It must respond only to the task/state (high specificity).

Part 2

course link: https://class.coursera.org/fmri1-001

❤ T1 time

WM = 600;

GM = 1000;

CSF = 3000.

❤ Terms relating to time

TR: how often we excite the nuclei;

TE: how soon after exciation we begin data collection.

❤ K-space

K-space is frequency space.

Doing inverse Fourier transformation on points in k-space could reconstruct brain image we need.

Each individual point in image space depends on all points in k-space (in other words, the value of the points in k-space tells us its relative contribution in reconstruct the brain image).

"Low spatial frequencies represent parts of the object that change in a spatially slow manner (Contrast); high spatial frequencies represent small structures whose size is on the same order as the voxel size (Tissue boundaries)." -- the center points in the k-space contribute most of the brain image, while the outskirt part mostly contribute to the sketch of the brain.

Part 3

❤ BOLD signal

- Oxyhemoglobin is diamagnetic; while deoxyhemoglobin is paramagnetic (distort the magetic fields, and suppress the MR signal - when deoxyhemoglobin decrease, then the T2*-weighted signal increase).

- Bold signal often corresponds relatively closely to the local field potential (LFP - often reflect the integrated post-synaptic activiy across a group of neurons) - the electrical field potentional surrounding a group of cells.

- Bold signal does not always reflect changes in neuron activity.

❤ Basic quality control

- SNR (signal-to-noise ratio): a basic measure of effect size.

- CNR (contrast-to-noise ratio)

The two measurements can be calculated at both spatial and temporal level. Note that for temporally detrended data, the temporal SNR (or functional SNR) is also called Signal-to-Fluctuation-Noise Ratio (SFNR). Temporal CNR is also signal sentivity.

- Bold response is non-linear, which may cause nonlinear 'saturation'. This effect can be reduced by increasing the intervals between two stimuli.

❤ fMRI artefacts and non-signal-related noise

- Drift (low frequency noise)

Slow changes in voxel intersity over time - scanner instabilities and aliased physiological noise. Should be taken care about when pre-process images and conduct statistical analysis.

To aviod drift the experiment design should be fast.

-Motion

Should be taken care about when pre-process images and conduct statistical analysis. Only motion correction in pre-processing steps is not enough.

- Respiration and heart rate

TR that is too low may give rise to aliasing.

Part 6 - GLM

- Statistical analysis under certain circumstances:

- Pay attention that the first colume of design matrix should be 1, in correspondance to β0;

- Build a certian GLM model: assume a LTI (linear time invariant) system (because HRF is fixed and will not change with time), and the predictors (Xs) should be the neural response function convolved with HRF;

- Mass univariate analysis: assume each voxel in the brain responding independently, and build a GLM for them each for analysis;

- Contrast: vector of weights, used to perform statistical analysis (c'*β = a, a is h in statistical analysis). Usually sum(c) should equal to 0 for the convenience to conduct statistical analysis of H0 = 0.

- Using one sigle shaped curve to fit the HRF has imperfictions: actually HRF varies across brain regions and experiment paradigm. Three ways to model HRF:

❤ Parameters estimation (actually we don't have to care about these the details)

- Based on the assumption below:

The following computation is based on two kind of hypothesis: ε is normally distributed at the mean zero and is IID (Independent and identically distributed) (then the variance-covariance matrix V can be considered as I(σ^2)) or not.

Then we have:

- Specific computation equations for T and F-test in SPM:

- Interesting angles about GLM

.. When fitting the GLM model, we are actually calculating in a p-dimention hyperplane space (p is the number of independent variables, namely the columns of the design matrix (-1? for the baseline));

.. As the figure shows below, the fitting of the dependent variable y' is actually the projection of y onto the plane that independent variable matrix (design matrix) X defines.

Part 7 - Multiple comparison correction

- voxel-based correction:

FWE (Bonferroni correction & Random Field Theory (usually gaussian random field) & Permutation) - too stringent;

FDR;

- cluster-level inference (correction): sensitivity but bad spacial specifity;

- threshold-free cluster enhancement (TFCE).

Notes: Principles of fMRI 1 (Coursera)的更多相关文章

  1. fMRI在认知心理学上的研究

    参考:Principles of fMRI 1 问题: 1. fMRI能做什么不能做什么? 第一周:fMRI简介,data acquisition and reconstruction 大致分为两类: ...

  2. Notes of Principles of Parallel Programming - TODO

    0.1 TopicNotes of Lin C., Snyder L.. Principles of Parallel Programming. Beijing: China Machine Pres ...

  3. Coursera公开课Functional Programming Principles in Scala习题解答:Week 2

    引言 OK.时间非常快又过去了一周.第一周有五一假期所以感觉时间绰绰有余,这周中间没有假期仅仅能靠晚上加周末的时间来消化,事实上还是有点紧张呢! 后来发现每堂课的视频还有相应的课件(Slide).字幕 ...

  4. Coursera 机器学习Course Wiki Lecture Notes

    https://share.coursera.org/wiki/index.php/ML:Main 包含了每周的Lecture Notes,以便复习回顾的时候使用.

  5. Coursera, Machine Learning, notes

      Basic theory (i) Supervised learning (parametric/non-parametric algorithms, support vector machine ...

  6. Coursera台大机器学习课程笔记15 -- Three Learning Principles

    这节课是最后一节,讲的是做机器学习的三个原则. 第一个是Occan's razor,即越简单越好.接着解释了什么是简单的hypothesis,什么是简单的model.关于为什么越简单越好,林老师从大致 ...

  7. Notes of Principles of Parallel Programming: Peril-L Notation - TODO

    Content 1 syntax and semantic 2 example set 1 syntax and semantic 1.1 extending C Peril-L notation s ...

  8. C++基本要点复习--------coursera程序设计实习(PKU)的lecture notes

    因为一些特性复杂,很多时候也用不到一些特性,所以忘记了,算是随笔,也当作一个临时查找的手册.没有什么顺序,很杂. 1.构造函数通过函数重载的机制可以有多个(不同的构造函数,参数个数,或者参数类型不同. ...

  9. Laterality issue on fMRI image

    The laterality issue: different software will interpret fMRI images in different way (mainly refer t ...

随机推荐

  1. AFNetworking讲解

    #import "ViewController.h" //#import "AFNetworking/AFNetworking.h" #import " ...

  2. MicroStation VBA 操作提示

    Sub TestShowCommand() ShowCommand "画条线" ShowPrompt "选择第一个点" ShowStatus "选择第 ...

  3. 哭瞎!360云盘将关停,你的几十T照片和文件该怎么办

    IDO老徐刚得到了一个非常不开心的消息,360云盘将停止个人云盘服务...进行业务转型,在网盘存储.传播内容的合法性和安全性得到彻底解决之前不再考虑恢复,之后转型企业云服务. 而且之前共享的所有资料, ...

  4. vi, vim 基本使用(2)

    进入vi的命令vi filename :打开或新建文件,并将光标置于第一行首vi +n filename :打开文件,并将光标置于第n行首vi + filename :打开文件,并将光标置于最后一行首 ...

  5. 数据库 SQL语句小结(更新中)

    ################ Navicat,单条执行sql ################ Navicat,数据库管理工具, 在查询的页面有好多命令,若单条执行: 1:可选中要执行的一条sql ...

  6. XML语言基础1

    这学期选修了XML技术这门课,没有发课本,于是参考了W3school教程,整理一下上课的内容. 1.XML简介 XML是一种标记语言,很类似HTML,它不是对HTML的替代,而是对HTML的补充.在大 ...

  7. 中控考勤仪IFace302多线程操作时无法订阅事件

    场景: 在各办事点安装中控考勤仪Iface302,各办事点的工作人员上下班报到时使用指纹或面纹进行自动登记,验证成功后将与服务吕进行通讯记录相关的考勤信息. 条件限制: 由于Iface302设备不支持 ...

  8. Flume应用场景及架构原理

    Flume概念 Flume是一个分布式.可靠.和高可用的海量日志聚合的系统,支持在系统中定制各类数据发送方,用于收集数据:同时,Flume提供对数据进行简单处理,并写到各种数据接受方(可定制)的能力. ...

  9. 十五天精通WCF——第七天 Close和Abort到底该怎么用才对得起观众

    一:文起缘由 写这一篇的目的源自于最近看同事在写wcf的时候,用特别感觉繁琐而且云里雾里的嵌套try catch来防止client抛出异常,特别感觉奇怪,就比如下面的代码. public void S ...

  10. Android设置AlertDialog点击按钮对话框不关闭(转)

    (转自:http://blog.csdn.net/winson_jason/article/details/8485524) 当我们在用到Android alertDialog创建对话框 的时候,我们 ...