aaarticlea/png;base64,iVBORw0KGgoAAAANSUhEUgAAAscAAAHuCAIAAAD83zYaAAAgAElEQVR4nO3dP1LjygIv4LcJ5yyE2As5lBMyVjCJExORn4Qqpy8hYIrUyYsmoOokkDkjvEvQC/THLakltew2A+b7ijoXZLnVkue6f+puSf+nAADI4f/87QoAABdCqgAA8pAqAIA8pAoAIA+pAgDIQ6oAAPKQKgCAPKQKACAPqQIAyEOqAADykCoAgDykCgAgD6kCAMhDqgAA8pAq4BK83i7urhZ3t0+DLy3vP/qvvd9vriKvjpQW9fFwPbiJGd5elvO2C3w1UgV8Y1VzPudn8/AWe9fNa1DszFTx9FgVcv3yHnu9yS6Rn3C7UgV8e1IFfGPHpYri+WYoT5TGUkXrvWmbG00VL+Uu3D5JFXABpAq4BMeMgFSNfZ0qRuPC43P9riNSRaUKDcGSomiCkVQBF0GqgEtQRYeRn8ypItLDMaUaKDkUVRSFVAGXRaqASzArVcRWvn55uGlWC3o+qpY+lirqEJDUURFPLYdJHlIFXASpAi7BrBGQv5Eq4itLFXBhpAq4BMeMgHTGMp7nporS02On8EOfRDBKUo62HFY7jIZIFXBJpAq4BPNTRbvz4PbpuFQRXIRy8xr+2UoGvXmaVSHXL+9SBVwUqQIuTjUNc+DuEa11Un/GZ2t2Mk1nPmaQV54er25e24MyUgVcEqkCvrEj71fR6qi4eX2+qf87I1W8pG168/BWZojH5+7UirLrQqqASyJVwDd20l2wlteRK0unRkCam3O/JqeKonh7eaiCQtCr0R5DkSrgIkgVcEmam2d3G+/Q6+3i7ur65bl9v4ruCjPvqRVMlSiK4VGYukekmWMhVcAlkSrgUtRTJR4f6hb9od3SN55v7pb3H+9HpIoqtXTuj1mVGWxrIHzUoSdYLlXAJZEq4BI0IwvBczeCKyy6OeDp9bl3b81+af3Wve5p6M7HLDqponflSFFMP4RMqoDvT6qA7y2cWlG14p3Rh2AaZitbzE8V9bYOb+ld0Tr92NJIIqlIFfDtSRXwjXVuF1GJzGkI5ls0bfYxIyBF8Xwzch/ugcRw2PpwJ8dkIcA3IFXAt/b2suw1w2MzJfvhY2aqOL6eQwMf7RmmOirgO5MqAIA8pAoAIA+pAgDIQ6oAAPKQKgCAPKQKACAPqQIAyEOqAADykCoAgDykCr6h3Xq52u6bP/fbVf33br2MWW335WqN9a71Z7O0KXC9K/bbVbiZcPPVij/A8Ts7dPi6xQ+tlP55FT4y+CqkCr6kdjroNhSRpmi8dWpSxXrXLGj+DIoo/65f6TZR9QpHNFH1c7N6z+xoHuQR3nU7unBk+TmdN1X0PoTYa1OfV3GWj6wUfHC3T8XA09QGHrEW/9ATnse2W4eBqfw/w2q772Xm6dAGn06q4EsKQsJUhJhsMLqponrD4Llv7IX6S/3YJurpcXn/Uf/xeru4W95/lL/Uj71ofo8uHPn9zGbs7EBHUbcVjB7fASmf11CRJ35k1XNS2k+Qjx/5gY9j+kMfOZB1dXfrw36208ZuLVfwBUkVfEndVLEdHtlodTHEGp12qmjOZofOfQ+bnnviu9+u0r7nq6d8PT2G56nv95vBhUUxuLxz1JbrbXMYyhGBTgPcavsTWtp5qSLc+/441YwOpiL58yrO9JG9vSxTA0RSyKsf7TYnVey3q26OaA/6GNfhy5Eq+JKO6avotCi95fvtqmxz2+McvTfs91UhZ0oVT4/lGXDnCaLF0+PV4vE2tvC597jRZnn3uCyD9rXzR1334Ax/PR2Bjk4V3ePbSxXlCsMzYVI/r+IsH9n7/SYyNnF0qqg/9DmpotcZ0UoVwWwi+EKkCr6k3ryKVpsymCoS+iometSHu+dX2+2Jg/SdB5SfJ1W0+iR6TdD8pujYVNFKNdWC7hTbSMHB204asTr5I3u+ubu63gQTI8qj3Z4VEZ0q0e5D6j2Vfmzlw4Fcrlb9nohuAtNRwRckVfAlRfoqgmbohL6KQxNT/dlqb9qNT/apf6W3l+Xibnn/8TdSxaEJTs0Wx6WKanthV0DraEb7CMIpBMURn1d3I8UpH9nzTWseZefPoiiqfNCNBdGFhw89aeWyz2m16gYHIyB8A1IFX1J8BCRoI05MFUHvR5haBk+Kl2GDdvJlimXv+sPfSBXNX6nRYn6qKEtvz+NoX/S5Wy9Xq9XwdJnO2fjE51Wc5SPrHvC3l2V35mZ8lGRg6GTOyvVH181enWtDen/DFyBV8CUdOa8i1ia1UkXwwqHvo+pYDs+zgysaD0uypYrqxPc8szUTUsXwsr4jrgHpFVrPkChfKEuc+ljTP6/iLB9Zt70/TIwYXmd4YRHv7ZhIFUUnoXVShM4KviKpgi+pN6+i++p0X0Wj11fRLG6G7dfdFjjaRAWbnzn17/kmmKB3uLgg95WlKfMq1uGBS2iTjr8GpKPflZSQKlI+r+IsH1lwLWhR3Snk5vX9fnMYxagHNaILi4EPfWjl7oHo9PU0eaxzRYhQwZcjVfAlHdNXMVVWpJUKIsvhO7rdRFWd9JHmrWekiXp6DG98FAaC55vIja2iC0eWH/Z0qq8ijGtJUyu+VKqIfl7FeT6yomjNrGx6jPqf49CHO2vlzoHo7/lqu+/M1nQFCF+RVMH3EXyptgebow1Gb+3+6WtsTKA9Ha61RuTmD5fv5FRx+By68yjDIafIGrM/r8JHBn+dVAGMOHkSCfCTSBXACKkCmEGqAADykCoAgDykCgAgD6kCAMhDqgAA8pAqAIA8pAoAIA+pAn6e6j6VCfei8LAJYA6pAi5d+PiIzpPk+08Y6zxrIurolPF8M/wQE+ASSBXwY1R9E/HgcMgZVWjoPHjj5Jtsvt9vxh6NBlwCqQIu3W7dPF6tfvBllQ8iD4+vHzQ+IvaszImHf5bP6nx8Lv+bde+Ar0SqgItXhYcqMMRDQ/Dg+WP6KsZTxdvLcrF5eKuzRb49A74YqQJ+gEOgWO+CfDDQV9GkijzzKV5vF3e3T0VRSBVw8aQK+AnCvoTEVJHHx8P13fL+o/pLqoALJ1XAjxBc7RGdrVmli/12tVzvhi8EmZ04Xm8Xd1e9n6rrArg0UgX8BGVOKKPDWF9F66LT1mu79fh0zCT6KuDCSRVw+cqEUPZDjKaKdpTYb1fL1XY/fYFHwjUgJakCLpxUAZeuThOta0ujgxud/on9dpU69CFVAEUhVcDF682/HJyQWb5wCB2dC0tPvRYEuHxSBQCQh1QBAOQhVQAAeUgVAEAeUgUAkIdUAQDkIVUAAHlIFQBAHlIFAJCHVAEA5CFVAAB5SBUAQB5SBQCQh1QBAOQhVQAAeUgVAEAeUgUAkIdUAQDkIVUAAHlIFQBAHlIFAJCHVAEA5CFVAAB5SBUAQB7pqeLp8Wpxd3XzWv/9eru4u1o8Pnd/L4qieL/fBGv2S3i9DVYGAC7COVJFuebi7vYpXsLzzd3V4u5qsXl4y7AHAMDXcESqeHtZLspYEP+5fSre7zdX7d6LVgllZ4ZUAQAXJSlVlF0R9c/1y/thYXwEpCg+Hq7vbp8+3u8fR/JHXRQAcAHOM68ipo4m/fkWAMAlOD5VDAk6NoKV6zGRcl6FsQ8AuDzHpIqPh+upQY1Yx8byehOs6RoQALgwx6eKsr8hGPsoZ3HGUsXzzd3V4vG5cw2ISRUAcFHmporF3dX14+2sVNH83uvtWN5/nGevAIDPl5IqwktJ5/ZVVO99fC7aUaMus3tPCwDguzrvvIrHcuZm1SfRHhZ5v9/oqwCAC3L2eRWvt838idSrSACA7+hTZmv2SgAALs9ZUkUwRCJDAMBPkZwqyttYLe8/JudVPNw0mWN0TbM1AeCiJKWKJhyUt64K+yoCVV/F48PNRlYAgJ8nfQQEAGCMVAEA5CFVAAB5SBUAQB5SBQCQh1QBAOQhVQAAecxOFcvlcnLJceUc/d5TigIAcklNFU3LPfJLuHJUtMBZW0/5c7wOIggAnMmMvoqyPQ7/Gy4fecvcl8a3nhgXhsqXKgDgTPKMgKQ37SM9HEVRFLv1crna7ie2m9hXkVj/yU3ndOpW9ttV1mqeVJ/duv7Q17uLq0wGX7BKAOeVlCpG+gbGG/t+2hhPFeXXcNiwHN21MDdV9Dd9DqdtpW6lpt+/366TtnFCffbbVdVW7rerqYYzqT4nVGa3XoaV+QqN+BesEsDZnToCktiFkJYqduvlet07X+2UM2Jo6wnL45vOLcNW9ttVvlRxQn122+A9k+1mSn1OqMx+H7xltz75UzwkgqPlrhLAt3DqbM2hVDHUxo+kiv12tdru+93g4wMcI+khJXyMbzqvLFvJmCoy7vVufWqqyFaZQx/KSap+oSxdDJmqBPD1pY6AjPw+q99iOA1UzcrQ6PpkgYn1jxnadNlWlh38kQbmMGzeEW9CjtxKv5RMqSJPfZpKnTYCkqkyTTETkovtjcrM/NDTqwRwCebN1hzpNpibNrpFBZ3Ou3XkS7opc1YnxEi1pzbdNB+r7T7HXM5MWxlJFfMavIx7PdBwzqhPjsrUGWGkhe/UK3kfq6JndzgkVwngQhw/WzN8tRjNEP0lRa+lb41k92JF/10jvwxVY8jgpsPZAmldBJ+wlVx9FRn3ereeXGeiPhkrUzbkCQfxDMWe4b0A38vs2Zr93/t/jrwUDwHBOV3njLYTYo5OFUORaGTTvbane74541x89lbCslvF5UkVWeuTcBo+Wp9jPoLB+iRHs9QrNDpjILNHQBKrBHARZs/WTPkzZc1web8HvdNb0XlX89/On0PbHane2KbntD3jMm4lS6rIVp+wm2K/3Q6uOVaf7B/B9BUcScXmnK+Z4aISgO9gRqqIBoJioFGPrhl/KTrVr323p3DT0WqEy/tVGqzG+KZzpYqsW0mb6jDZN5CjPt3T9pGKD9cn+0eQMjsyqRcqXwwwYRP4MWbP1uy30EOpYiRSHF499H4H37thl/hqu0+74iPaOTGSeKY33by6i62ZKOdWwmb82GYqU30i7ziiFc51cEYOTGSiZTBb85RPdlyOzwrg25k3r2KZfI+K5VTzP7LC0FuG3rUc7ZnotlCB9ArwvbXu2QXAucy4BqSzpBjun5hssI9u0YfeOB47+MEyj2YAMGL208UAAKKkCgAgD6kCAMhDqgAA8jjpOSDZp0YeV+A5ZmgOTUT9/Jp8ji9Y88nLiNLXB+BznPp0saHv90TRdw2VMKtiJzouVZyjJp/gr19qOzclRP9hzPoHA8A5HP8ckJGGf1YDHG0Gxhv1wZCSqVEZ2np0+bkrcz5fqnrjn3h0efQfzFfYF4AfK8/TxcKFid/vk7lh7tYz6pQ/sulZ+all4M7bzY0lZ9xhYewm3u07n6dVb14eim/9cGvJxB1JTBUnffQDB6r9ZPTp5QAMmf10saGz9v7CuQ3Acakie8fA5J7OPS2OrtZ5EmawtGyFD79Nihd1eOWYVDFe+amtH55jWoak4+5BNbLp6Ic++Q8geqCCA90KHUPLARgx496a4Vd2yrd54vd+9KXJt4xUde4hGKrzSGkjTVea3Xq5Xncbq/aDtnbrtKYsWlS70NhLI59L4qEe3Hrr9tjHP5bt6E954NVYVTvPNmuixNByAEYdOVszpU2d2+6mr99fczwEHCHc05F8M7TC0Mql6hmWnXPgTvuf+sjzWFHtFc7XVzG59WKqRe4HmpQjme2YdyrXRKCh5QCMyjmvYmjlxMLT3xJdc+4W55af773Ng7HbTVy3+U05QR4oqr3GeKqI5qTo70dsfeBJ5/FqTC5Jq1X01ZFj3n1cap0qYssBGDV7XkXzZ96zyc7y8XctE85rj04GJ6aT6bfv1k0D1Xry1RGpYqioQGKqWA4kibHdSdj6oTWfEv0nMVnn1I9+sKq79bIzmeIQPmLLARhz0ryKoj30kN4eL2Mnx9FComWmLDwuHAzt6XijldoMF0XRauDaTdz8XvfBogLjqSJ65BN3J2Xru3VqYzw3VcwqaqyqzVU3lfqVoeUADDupr6L4qqniuEgxUrf0JRMRpNtWBQ3W3HkVI0V11jpHqkjY+uFSkARzU8W4uVVt1osdqrQZLgAc9xyQphGKfpunfN1H263laNscfUu/VkMVHnk1ZWfTl4xvqD8gEJw5t6YgpISK4aJaqw2VEz3yibszvfWwm2K/3U7Fi5TjfNxbTjxQMgVAutnXgITpIfrfxHKOXji0lbyporOb6VUa21B05mJ4n6rD1aRTkyomi6oNTQkYqfNQmJu3Iy3TfRb9oz307yFdUlWbvweGj4x9AKSbN6+i+XPkv4kFHr3wiFSRXrd+UzpZgc6+D27o0A/fa86CxZF7a1aLulMuJotqt+1jp9vRPRrcncmt9x36YgYb6c5hj296tNqRJclV7R6deh2dFACzHHlvzSL55LJfyGQsGGmeou8dLzalYiMrj9eh8/usas/TurVUZhmql25gR6YjQsKrn7ojAPQcM6+iFG19574r8aVTij3RSGv3WW3Y4GWbuXzNHTnin4pUAfB3HZ8qAABCUgUAkIdUAQDkIVUAAHlIFQBAHlIFAJCHVAEA5CFVAAB5SBUAQB5SBQCQh1QBAOQhVQAAeUgVAEAeUgUAkIdUAQDkIVUAAHlIFQBAHlIFAJCHVAEA5CFVAAB5SBUAQB5SBQCQh1QBAOSRnCqeb+6uFpuHt87i19vF3dXi7urmNf62t5dl5F0AwOVJTRUfD9d3V4vH5/bS9/vNVZkqei8VRRkphl8FAC5KUqqoOyTqn+X9R1EUxdPj1eLu6vrlucwW0e6KOlhUbwEALlZiX8XTY5gM3t8+6rhQjm6UPRnxYFH3ZxgHAYDLNitVXG+uFne3T68P15urdu/F4ef65b375rHMAQBcirRU8X6/uVpsbm/KVFG832/iEeHpsVyh4/nG7AoAuHhpqeL55u5q8fhwX6WKakZF/XN7/7JcbB6eXpbxDonDtAyzKwDgcqXP1qxnZTap4vDLeKpoRRDdFQBwqY65BmTzcJ+eKqpJFbdPzS/n2A0A4K+bc2/N9yNGQKo1H5+Lw5WovemcAMAFOCFVJPRVVJ0cTf9EOW3T7AoAuETnTBXVpR9h50TrLhcAwCU5YV7FxAhIOPYRqG6KZRwEAC5Nlr6KcoDjLUgV9cSL2NxMN8UCgIt0jlQxFilKU086BQC+n1NSxc1j/YCPuvthsXl4687QjKufOuZCUwC4FHNSBQDAMKkCAMhDqgAA8pAqAIA8pAoAIA+pAgDIQ6oAAPKQKgCAPKQKACAPqQIAyEOqAADykCoAgDzSU8V+u1pt9+1lu/VyuVzvoisve2vHC42+f/wdy4Syy/VGyq43vVsv+9a7Itjj3bpc0P3fbnnN2lEpxwMAvrHkVNFv/8slg7lgtx5t1JPX6a6/XO+K3Xq0kS4TxWjDnrjlMj/s1sv17hAl9ttV5K29DBJ/FQAuVlKq6Jx9r3ftVnKoxZzqiBg6qY+f2ZeJYltva79dxXLBbh3tFWh1qgy8NVb9WCdGd/lquwuXrNf6KgD4mVL7Klon4L04sFqvY8FicICkfnGood2tw5c6gx6HENMZ5TiUGNa2mzOa1xK7D8qdbe18/bZWCfoqAPjpElNFMAYQbTSLbhKol6zi8ysGxigOQwz1u6pgMjZXIZ5dmncMpJpyCGRwrKTcfpVItutm0X67XjX5oHUooqli/rwRAPi20lJFO08ETXzYfHbSQxUNou3qbt2fkRH8mTTXc2hmRB0UVtv94NzOoQ30emTKv8rFVcHr3W7dxIdej8ohgxgDAeCnSUoVrTP61Xa7Dk/Kmya33Wa22uSUaRedVDF+hh8rc7duNd3x7o3Vdt9Zr1NEd7uRulT7eqhDvSl9FQD8aHPuVxHvq4iminZrGs8VkdGHgVQxPE4RSwd19Tqt+WEsJRaC2nvYKqe/rf121R/bqYvcb1fx/grpAoALNzNVLJfL5Xo91VfRm4gZHXEYPI+v1j5kkeGpju1XWuMdwUv9e1ekpIpODVvRKDLVtC6ynoLS67qRKgC4cDOvLE3oqxi55DN2v4v230G57RGRpFTRf3GomyApVex3u31QqX4vRqvY1riIVAHAD3TcCEh0AsHw9RjNKu0T/NGWNuzemDcCEr5jKHKk9VUUYf/MMrji5DATtHNl6W7khp1SBQAX7thUUU4cKK+1rJr89Xr8jpdVEZ0bTKTEhcS+iqC4qast2iXGLmqJ3VCrl4uq7FPfBetwjy59FQD8QJ4uBgDkIVUAAHlIFQBAHlIFAJCHVAEA5CFVAAB5SBUAQB5SBQCQh1QBAOQxJ1UMPOEjvuLQfavLAvbBTSjrZ4u0/rdbXrP29F27Zz59vPVIsuNMHJjujTZ7N96cdzQuTv/hb5BD//a4wLmlp4rRh3GEbXv/OWJRwRNPD43nfruKvLXX6sZfbcpNb6HqO4hHnkHa3+WR55usVr1cET1e1ZNEog9fSz0adbV7pRzunT6jgY4XVb0y4ws5Wk77GMSrFXme7VE7copcx3P4YBanH8+Ug3kGsQwcrUJ0efrCM5UQfVwycD6JqaL/BIyR9aa/8KItbvWc0nYjvAuXlM/4iog+C2RstWbVw6M7IlWvH6PWrB45Ak2IiT6UtX42ev3AlPWuX8H1Nvlo7Ns7GW4u3PyMYBV9/GpTx/Sv42g5rQM48OC5Xl2P3JFT5Dqe8YOQ63gmHMy8YtUeOizR39MXnq+ET/tHBJSSn4QeaeV6DV5zlj36gPJ2uZ0njAePKY08XWyqr2Kg5Y8UHn5Xdp7iPnKuGXuiaauara0P9FbsttvoA95Tj0ZVkXZ12meUyYNAsaIG9ubYckYL7C87aUfSKht/7+nHc/wg5D2e6aWd2Ki2NzR0WKLL0xeer4T+LgDnNfOZpUHre/im6maI8ntsOIPUJ/DLZf3s0+pcfr0K80FkA7v2s9fb35YDG+x8tVRneWMzNKIngr3AEnTfHL64+x0esb7a3Xq13bfqP+do1FsbO5tOH4XqFRVWPPW7eKyc1kqRoY5+B9KsHak/yOObjVzHc+Ig5D2eY/k5WOW0I1MUnWoPHZbo8nXywvOVIFbAp5uRKsJz5/0++Kt1kjD0/+Bow1gvrpre9a7u5e2fd4StbjQNbNdVlAm+WmadsIy0Bt3v5l17FljvNLf6s9pmuTO9oxQevxlHo7X20FyWtFQRLSrc78Sv4tFyYns8XM3kHRmZ9BBPjCN9WFmO59RByHk8Rwcksx2ZfrW/aaowCAKfKHkEJMVqtRr8mtr1By8i/cpVr8ShGW2fcI32VUQWdlLFyBfLbmoq3eGLfLop7IyxNGXvd7ugN+KQHpKPRtH/suz2lgzVKL7PkaLCXZjfxz6vGewf9bQdifYmHSfX8Zw8CPmO51imyHhkDhv79qli5mVhwAnS+yrCFqDdGuxa10EOzKno9VXET5jqCyq6gw11Mxzvr2hFjfhrrS+W0etZxs4B46+N93KMqr8PU49Gf91o0kntsR/Z8+RWcKKcsVbw2FQRbva01iLX8Zw8CLmOZ8K86TxHJtieVAEkS04VYVjY7/fhl027GyIlVXT+f947Ge83S/V3/XrXa4kmOzDqFw7DEMOzSUfmmQ737qd2sA52iCQfjW4Jzcewmz27cLCogb+PLGe0FYwcuLk70u7Mai0ab+XHKz+zGlMHM75odlGpl2LVBZ1wZOLVHjos0eXpC89XwmG/pQr4HMmpImEUpPz/bVKq2O92++BUvt+L0foOaI0EzEoVYXdBNWNhvRvLDuEru86M0cFvprEvrU6BsSOWfjTigy+9s+vm9/3wNS0jRR12uDe3JT4YMVjOVH98rKWN7sik49qNXMdz8mAWGY7nkYMbJ7aonWoPfTrR39MXnq+EyD4A55Q+AjLsmL6Komkyy5tQNF+bhxkHh1L221V554qB8YJ2Ozz8Fdp8uySOgLQ3NVzujFQx+OWWcDSiwSZsvnqRbLBi40V1DnHvq/zIciJHceD7Pmsf/qBcxzO5nJOO5+jI31nEqh0uj9Wztzx94dlKECrgMx2fKoLvnOgkiN5awf/RDy1m8K7ouH59F6zD3apG+yqm+lQO8xXmj4CMH4reF3xC5051XNbJR2NmxcZSzEwZi+oV/G06p7/D8aTrO/0LgwuQo6+Cr2m03+avFdX1fc4kv8fxpOX7/POCCyFV8LeNzP6AE/T7RIFzkyoAgDykCgAgD6kCAMhDqgAA8pAqAIA8pAoAIA+pAgDIIy1V7IMbW9b3G279b3zVsdtbHt7Zf3TTOe8RNPlAqz5PPASAFHOeLlY+L3C9awWCbnPbCyDxV0efCdZ/rFc0mISvRR8S0H9DU3LKU8onbrQtZwBAS1KqiDbB1SNABxvddWpfRfVX++Eh7VQR6UroPCqj9UDHgTv/7wceJaKvAgBymDOvouwCaD0ftG6ND30Qx/RVdP+eThX9B02HWWLyaV+9x5N1ypp6MpiMAQB9qamiuqN+9Tjm1XZf7LfrVfN8z9agSD9VRM72R+ZOtJ8bGksV8c6IZunIUwoPNRlKDtXT1js1aPerSBUA0JeUKlq9AIeRj/Vut+4NKVSvNQFkaAxkpG1uv9QfZlmt14ODInXZ8b6F1LEMqQIA5psxAhJpkqtehaoRrhvzE/sqOgMSkb6KkakWTaqIFL5bL1fbXZ169vHOiqazwwgIAMyT3FcR62+oGvJV2MbXwxf77SreX1G1yIPzKLqzHLKNgJR70Zrg2Q9JvfcNXGYCAHQl9lW02ttWu9+dN1mnivoa1N7EyFaqKNvsViZZttv+bLM1e6ZTRbWVanFaqQDwYyXeBWu32wfzG1odC50lrUGR4VQRiQ+Hi0X321V7LsTQlaWdikxcWRput3XbjfDFcCpn/zZd1aTVkctQAeDHSp9XUQWI8j4UzTSKerQjHBMpJy9U11LER0C6UaGZ/9la0KwaH34Jy+/dBauXKrrdIgOTJ8r9a72724VRlqTbAgDa0udV9CY7RHNHD6YAABCbSURBVJZUDfN24HZT8Tma/bKG180pbV7F8GIAoMXTxQCAPKQKACAPqQIAyEOqAADykCoAgDykCgAgD6kCAMhDqgAA8pAqAIA8pAoAIA+pAgDIQ6oAAPKQKgCAPKQKACAPqQIAyEOqAADykCoAgDykCgAgD6kCAMhDqgAA8pAqAIA8pAoAIA+pAgDIQ6oAAPJIThXPN3dXi83DW2fx6+3i7mpxd3XzOvLe9/vN1eLu6vrl/bhKAgDfQGqq+Hi4vrtaPD63l1ZxYRF5KbKaVAEAlywpVdQdEvXP8v6jKIri6bHMCs9laAi6K55vgtX6qeLtZTkVRACA7yaxr+LpsZUS3j7qZFCOiZQ9GYdgIVUAwM8zK1Vcb64Wd7dPrw/Xm6t278Xh5/rlXaoAgJ8oLVW832+uFpvbmzJVFO/3m/j0zKfHcgWpAgB+nrRU8Xxzd7V4fLivUkU1o6L+ub1/WS42D08vy3oQpEwVUz9SBQBckvTZmvWszCZVHH7ppYoO14AAwA9wzDUgm4d7qQIA6Jhzb833xBGQ6tXDAEc/VVRDJKP3zgIAvpUTUsVgX4VUAQA/kVQBAORxwrwKIyAAQCBLX8VTURT1XSikCgD4oc6YKhJ+pAoAuBynpIqbx2pA5K1+DkjkUelx+ioA4OLMSRUAAMOkCgAgD6kCAMhDqgAA8pAqAIA8pAoAIA+pAgDIQ6oAAPKQKgCAPKQKACAPqQIAyEOqAADykCoAgDySUsV+u1qGVtt96/Xdul7UXbNvvQtK7RZU7NatVXq16L0htlL7/YfK9XZpYEPHq7e+W4/t+dwdr16f3PcTpR66yKr9twLwE83vq4g0NcNN3m492Nr0W6JyyVgLtVtPRIFoy9h/x3T4OaYJn6zdUB2jO94+qO2/orvZjyVBuGm9El2eeOiaVbcjx/DcAQiAryktVYTty25dtYApjclAw9Q5l1/v2ifwsZP5onlprC8jUmqvivvtKn+7l9j3MWPHZ6WKutx2KmneEtYutjz10PVrOVAfAH6k1L6KJh7E+iWO6atovdIbMVit1wPBYniooNXYNdmn01G/WsXb0dNOtJudGclDc3d8Tqooe0nCvpLucFH9d3z5/0s6dNUah6pEB3p0VAD8XMkjIFUzU7cu3SZ8bqrYrctmcL0bXCda6m69XK3i8yt6VeqtF20a2+1nQiwYVjbrw4Fltd2n73i8yW73J7S22xqC6U1CqV6LL/+/6Ycu7OmJ7MBJxw+Ab27GvIr9drVcrZomOGj0q1+n2sGgcW03q7Fx/mjzVLWJ8Q73fl9F0e8ZOLSHzSjAft/flSJl7kX73HxoMmm76T1yx0f7Kg5hIhjd6AzJNH9Gl3dTxeChq/4N6KsAIGbWbM326MOhaZvdV9FqsVfb7brp9G+a3KELJYa3GJscULRa+916uV6nR5+5Ryb+ptYhSN/xzpHr7HAYK8KBj3DSRKvRr0d+4sv/b9Kh2xXFbr3eHT4ZfRUAtMxPFe1T5vqsdv41IEXrrDhoz4ZSRe8Evf96/4S79Up0ckhv/sL8aYfDOWigxIQdT04V/Q6DgeGhkeX9eRXB6+1DFx5nfRUAtMxIFc2UwCyzNesSl8vlep3QV9E6Cy+KSDs5nCq6tWlddrHfhyUdlSoi2+9vtLNsasdTU0X32MfjQ+/otZenH7qikyr0VQBwkJwqmn72yKSG2anicJKb1lcxcN1m2PefkCqamidMADkiWqSkivQdT0wV7UNQb6I30zKaKQ7L0w9doa8CgEFpqaJ9AtxrdgZTxcR9DA4DAeEpe/PWsO0au0fFwPTKWA/BZIv3aX0VUzs+nXzq62O7pdexIjYVtH69s3zWodNXAcCApFQx2eMQ6bxIOekPG9ftuj7PbZq4+mLJiWaqTh3xE+5WgzlUmaC+x7eJ7QZ19BAk7Pjkto5OP1NVnzp0++1qtd2NXyEjWQD8SLNmawIADJIqAIA8pAoAIA+pAgDIQ6oAAPKQKgCAPKQKACAPqQIAyEOqAADykCoAgDykCgAgD6kCAMhDqgAA8pAqAIA8pAoAIA+pAgDIQ6oAAPKQKgCAPKQKACAPqQIAyEOqAADykCoAgDykCgAgD6kCAMgjPVW8vSwXd1fXL+/1gvf7zdXNa/3Xx8P1XffPxeNzWmnPN3dXi83DW2el19vF3dUiLLZfSP9dAMBfcXSqKP9c3N0+FUVRFE+PV4sgGVQrP95e310tgp8mH7RKi0eQ9/tN/cZYOqkrMJZdAIDPc0JfRZUkrl/eq1hQJ4z6peX9R93f0DT8Hw/Xd1fXL++H0uoOifpnef8RFv5cZotod0UdLKq3AAB/U1KqqEJD83N73/QT9H6uX96rEY2726d+FumnijCCFEVRvL991HGh7Pmotx4LFnV/hnEQAPjrkvsqqvY77KsoiqLfS1EUdf/E5uEt7M8I1o+miuvN1eLu9un14XoTzyuRrRfjmQMA+ETJqaLsfkhKFcEci2BuRDlU8dpPFe/3m6vF5vamTBWdSaDdYtvxJaiY2RUA8JclpopmauR0qmiGSzYPb2WT//hcd3VEU0W5zsN9lSrqUBKOtmwenl6W8Q6Jw7QMsysA4K9KSxXtLofH595Mi6A34qVu5jcPb6+3rQ6Ju9ungdma9azMJlUcfhlPFa0IorsCAP6ipFQRXKZRNv+deRLdvorN8vruarF5uK+b/JvXev7m5DUg1bvSUkWz9ej0DgDgM6WniutN98rSoojOq3h+KjPE5vZm0+SJVidHZ7ZmURSHzow5IyDVmo/PRX9aKADwyVKvLK3b9aRrQDr3yqx7I5o7WySkioS+iqrYZtNlfDG7AgD+krR5Fc9Pr5G7YBVFWqoI2/tsqSJyTUrrLhcAwCc75t6ag1M1m2sxWqmiauzLqZSp8yomRkDCsY/AwE01AIBPcModu4sioa+iWqE7MJHeV/EUrF+minriRWxupptiAcDfcuZUUY1T9Nv4t+6IRmqqGIsUpaknnQIAZ3HWVFGOZbRb9+CSkNYEiG6quGlu0BneVqs7Q3Osqi40BYBPlZ4qAADGSBUAQB5SBQCQh1QBAOQhVQAAeUgVAEAeUgUAkEdSqvgDAPDnz58/fzKkiv8BAD+eVAEA5CFVAAB5SBUAQB5SBQCQh1QBAOQhVQAAeUgVAEAeUgUAkIdUAQDkIVUAAHl8Zqr4799/lsvlr98515y7MgBwLp+VKn7/Wi7/+fffX9PNf/qac1cGAM7pc1LFf//+8+v3/8oQMN78p685d2UA4Lw+d15FevM/KyhIFQDwBUgVAEAeUgUAkIdUAQDkIVUAAHl8Uqr4/WvZNhgC0tecuzIAcFburQkA5CFVAAB5SBUAQB5SBQCQh1QBAOQhVQAAeUgVAEAeUgUAkIdUAQDkIVUAAHlIFQBAHnlSBQDAn9NTBQDAJKkCAMhDqgAA8pAqAIA8pAoAIA+pAgDIQ6oAAPKQKgCAPKQKACAPqQIAyEOqAADykCoAgDykCgAgD6kCAMhDqgAA8pAqAIA8pAoAIA+pAgDIQ6oAAPKQKgCAPNJTxdvLcnF3df3yXi94v99c3bzWf308XN91/1w8PqeV9nxzd7XYPLx1Vnq9XdxdLcJiI97vN1ftigEAf8PRqaL8c3F3+1QURVE8PV4tgmRQrfx4e313tQh+mnzQKi0eQaq4sBhNJ1IFAHwVJ/RVVEni+uW9igV1wqhfWt5/1P0NTSz4eLi+u7p+eT+UVndI1D/L+4+w8OcyNATdFc83wWr9VFHFnbEgAgCcQVKqqEJD83N7X3VURH6uX97rhv/2qZ9F+qkijCBFURTvbx91Mih7Puqt18FCqgCALym5r2JgoKHXS1EUdf/E5uEt7M8I1o+miuvN1eLu9un14XoTzyvtyCJVAMAXk5wqyrY8KVUEcyyCuRFlFHjtp4r3+83VYnN7U6aKziTQbrG3T1IFAHxNiaminpuZkCqa4ZLNw1uZAB6f67Y/mirKdR7uq1RRh5JwtGXz8PSyrAdBqnwz8SNVAMAnS0sV7S6Hx+feTIugN+Klnn25eXh7vW11SNzdPg3M1qxnZTap4vBLL1XE6+YaEAD4y5JSRXCZRtn8d+ZJdPsqNsvru6vF5uG+7nW4ea3nb05eA1K9S6oAgO8mPVVcb7pXlhZFdF7F81OZITa3N5smT7Q6OTqzNYuiOHRmTI2AVK8eBjj6qaLa4ui9swCA3FKvLK3b9aRrQDr3yqx7I5o7WySkisG+CqkCAL6otHkVz0+vkbtgFUVaqgiv2pAqAOBSHXNvzcGpmvWEzY9Wqmhd6pk6r8IICAB8N6fcsbsoEvoqqhWa20sMlTbYV/EUrC9VAMDXdeZUMdjAv3Wv6ZiZKhJ+pAoA+FRnTRXlWEa7dQ8uCWk9+rybKm6aG3S2bquVQl8FAPwN6akCAGCMVAEA5CFVAAB5SBUAQB5SBQCQh1QBAOQhVQAAeSSlij8AAH/+/PnzJ0Oq+B8A8ONJFQBAHlIFAJCHVAEA5CFVAAB5SBUAQB5SBQCQh1QBAOQhVQAAeUgVAEAeUgUAkMdnpor//v1nWfrn3/86S5a/fjfr/f617KzXWVy9ELw7sn75aquE6PKBrfXXHN7cQBHlG4Idm3McenvbL6FTcurhjdY3urnOHrer0d/c+ML+cWgf4fFPE4Dv4LNSxX///tNtWP77959W+1f+/vtX05yE7wlXbv9R+/0r3MB///6z/PXrVzQphMt//4puYaSE7ubiFS6X/vsrttNJx2Fwz6Ilzyl2eJe7m/vv33/iex/Z3MDCoeNQv2HoCP+OvgOAr+2TUsXvgfb9d3eN9ortsNHJDO02p/XG6n29rQ4t72xsas1wc9EK//fvP03i6PYSpB2HoX2Ll3xcsSOxouk+iO59tLDYwsHj8L+JIzx43AH4yj4nVfz+VZ2wBl3bv/tn279+hwvrLvHmvHkZJIxOm9NqQ5u2stM2DS0/VLJ3Ej/Quh02N1zh7quzjsPgvkVLPqrYWP06aw6kitjm4guHtzN6hOOVBeDL+7RU0W4El79+RxrkX7/LNqZqnqvf2o10b5JA9UJrokT1R7vFGlp+KDsYFhlZs7V0usKdVJF2HFq7OxGB5hYb3eXo5lpTHTozUWKb6y0cOg7jR1hHBcB39Yl9Ff/1/gzn9v1u+iq67dqhU6D/a7NSOGtg1u9NCZFMMXwm3Z3lGKlw/WqvryLlOPQOX2TAp9NXMbPY1i5Pbq4VQaKbG6hDtMTJz0KoAPiePq+vYnruwK/f3Rl/TQvTaWp6DXv7tL2rPpWOLP9fr30dWTOyL0MVju53+nHoH7/Oir2dnlXsSKQYKiDYSHRzo3XozQIZPsLRSAPA9/B5szXHrnMImpLOSERscXwKRHyrk7MNI5M0xkrob26gwtG/ZxyHzjZH+ypmFju+ywkXeEQ3N1aHkajQPsI6KgC+tU+7X0UwRh+2wZGJAwN3WYgO8kdbwMZ0quifNrcL65QQ39zE3SbaxSYeh4EpDYMlpx/e6C4PH9xoGbHNTdQheng7R3j80wTgy3NvTQAgD6kCAMhDqgAA8pAqAIA8pAoAIA+pAgDIQ6oAAPKQKgCAPKQKACAPqQIAyEOqAADyyJMqAAD+nJ4qAAAmSRUAQB5SBQCQh1QBAOQhVQAAeUgVAEAeUgUAkIdUAQDkIVUAAHlIFQBAHv8firiWfrrr5DIAAAAASUVORK5CYII=" alt="" />

-----------------------------------------

迭代相加即可

AC代码:

 import java.math.BigInteger;
import java.util.Scanner; public class Main { public static void main(String[] args) { Scanner sc=new Scanner(System.in); while(sc.hasNextBigInteger()){
BigInteger a=sc.nextBigInteger();
BigInteger b=sc.nextBigInteger();
BigInteger c=sc.nextBigInteger();
for(int i=3;i<=99;i++){
BigInteger t=c.add(b).add(a);
a=b;
b=c;
c=t;
} System.out.println(c.toString());
}
} }

题目来源: http://acm.nyist.net/JudgeOnline/problem.php?pid=114

NYOJ题目114某种序列的更多相关文章

  1. nyoj 某种序列

    某种序列 时间限制:3000 ms  |  内存限制:65535 KB 难度:4   描述 数列A满足An = An-1 + An-2 + An-3, n >= 3 编写程序,给定A0, A1 ...

  2. nyoj_114_某种序列_201403161700

    某种序列 时间限制:3000 ms  |  内存限制:65535 KB 难度:4   描述 数列A满足An = An-1 + An-2 + An-3, n >= 3 编写程序,给定A0, A1 ...

  3. nyoj 题目17 单调递增最长子序列

    单调递增最长子序列 时间限制:3000 ms  |  内存限制:65535 KB 难度:4   描述 求一个字符串的最长递增子序列的长度如:dabdbf最长递增子序列就是abdf,长度为4   输入 ...

  4. nyoj 题目2 括号配对问题

    描述 今天发现了nyoj,如获至宝.准备开刷. 括号配对问题 现在,有一行括号序列,请你检查这行括号是否配对.   输入 第一行输入一个数N(0<N<=100),表示有N组测试数据.后面的 ...

  5. NYOJ题目77开灯问题

    aaarticlea/png;base64,iVBORw0KGgoAAAANSUhEUgAAAsUAAAHXCAIAAADbX7BCAAAgAElEQVR4nO3dvVLrSMAm4L0Jci6E2B

  6. NYOJ题目57 6174问题

    aaarticlea/png;base64,iVBORw0KGgoAAAANSUhEUgAAAscAAAJLCAIAAACE5qzaAAAgAElEQVR4nO3dMXKrutvH8XcT6bOQ1C ...

  7. nyoj 题目44 子串和

    子串和 时间限制:5000 ms  |  内存限制:65535 KB 难度:3   描述 给定一整型数列{a1,a2...,an},找出连续非空子串{ax,ax+1,...,ay},使得该子序列的和最 ...

  8. nyoj 题目36 最长公共子序列

    最长公共子序列 时间限制:3000 ms  |  内存限制:65535 KB 难度:3   描述 咱们就不拐弯抹角了,如题,需要你做的就是写一个程序,得出最长公共子序列.tip:最长公共子序列也称作最 ...

  9. Num 15: NYOJ: 题目0002 : 括号配对问题 [ 栈(stack) ]

    原题连接      首先要了解有关栈的一些基本知识,即:      什么是栈,栈有什么作用:        1.什么是栈: watermark/2/text/aHR0cDovL2Jsb2cuY3Nkb ...

随机推荐

  1. keepalived安装

    两台虚拟机 两台配置操作一样 环境配置 [root@lb01 /]# yum -y install openssl openssl-devel [root@lb01 /]# yum -y instal ...

  2. HDU 4791 Alice's Print Service(2013长沙区域赛现场赛A题)

    题目链接:http://acm.hdu.edu.cn/showproblem.php?pid=4791 解题报告:打印店提供打印纸张服务,需要收取费用,输入格式是s1 p1 s2 p2 s3 p3.. ...

  3. Unix操作系统中UUCP知识详细讲解

    导读 Unix操作系统有很多值得学习的地方,这里我们主要介绍Unix操作系统中的uucp,大家一起来学习下吧!UUCP系统是一组程序,完成文件传输,执行系统之间的命令,维护系统使用情况的统计,保护安全 ...

  4. homework160809207刘兆轩

    # include <stdio.h> int main() { float a,b,c,m,n,l,k,j,i; printf("请输入三个数:\n"); scanf ...

  5. OpenCV中对图像进行二值化的关键函数——cvThreshold()。

    函数功能:采用Canny方法对图像进行边缘检测 函数原型: void cvThreshold( const CvArr* src, CvArr* dst, double threshold, doub ...

  6. CodeVS 2845 排序的代价

    Description 给你一个数列使他递增,交换两个元素的代价为两个数的和,最小化代价. Sol 置换群+离散化. 使一个数列恢复递增顺序,那么,他和他要到达的位置的数需要交换,这样就形成了一个置换 ...

  7. PHP MVC 中的MODEL层

    Model层,就是MVC模式中的数据处理层,用来进行数据和商业逻辑的装封 三.实现你的Mode层 Model层,就是MVC模式中的数据处理层,用来进行数据和商业逻辑的装封,进行他的设计的时候设计到三个 ...

  8. 【MySQL】MySQL 如何实现 唯一随机数ID

    如果不是 UUID 好像比较困难 参考资料: http://bbs.csdn.net/topics/390001507 https://www.zhihu.com/question/20151242

  9. .net MVC借助Iframe实现无刷新上传文件

    html: <div id="uploadwindow" style="display: none;"> <form action=" ...

  10. Sum of Left Leaves

    Find the sum of all left leaves in a given binary tree. Example: 3 / \ 9 20 / \ 15 7 There are two l ...