D. Directed Roads
 

ZS the Coder and Chris the Baboon has explored Udayland for quite some time. They realize that it consists of n towns numbered from 1to n.

There are n directed roads in the Udayland. i-th of them goes from town i to some other town ai (ai ≠ i). ZS the Coder can flip the direction of any road in Udayland, i.e. if it goes from town A to town B before the flip, it will go from town B to town A after.

ZS the Coder considers the roads in the Udayland confusing, if there is a sequence of distinct towns A1, A2, ..., Ak (k > 1) such that for every 1 ≤ i < k there is a road from town Ai to town Ai + 1 and another road from town Ak to town A1. In other words, the roads are confusing if some of them form a directed cycle of some towns.

Now ZS the Coder wonders how many sets of roads (there are 2n variants) in initial configuration can he choose to flip such that after flipping each road in the set exactly once, the resulting network will not be confusing.

Note that it is allowed that after the flipping there are more than one directed road from some town and possibly some towns with no roads leading out of it, or multiple roads between any pair of cities.

Input

The first line of the input contains single integer n (2 ≤ n ≤ 2·105) — the number of towns in Udayland.

The next line contains n integers a1, a2, ..., an (1 ≤ ai ≤ n, ai ≠ i), ai denotes a road going from town i to town ai.

Output

Print a single integer — the number of ways to flip some set of the roads so that the resulting whole set of all roads is not confusing. Since this number may be too large, print the answer modulo 109 + 7.

Examples
input
3
2 3 1
output
6
 
Note

Consider the first sample case. There are 3 towns and 3 roads. The towns are numbered from 1 to 3 and the roads are  initially. Number the roads 1 to 3 in this order.

The sets of roads that ZS the Coder can flip (to make them not confusing) are {1}, {2}, {3}, {1, 2}, {1, 3}, {2, 3}. Note that the empty set is invalid because if no roads are flipped, then towns 1, 2, 3 is form a directed cycle, so it is confusing. Similarly, flipping all roads is confusing too. Thus, there are a total of 6 possible sets ZS the Coder can flip.

The sample image shows all possible ways of orienting the roads from the first sample such that the network is not confusing.

题意

  n个点得图

  给你n条边,a[i] 表示 i指向a[i]

  现在你可以改变某些边的方向是的 图中不存在环

  问你有多少种方案

题解:

  总共有2^n

  对于这个图,我们视为无向。

  我们要明白 是由多个联通块 组成的 联通块中有可能存在环

  那么定义一个 联通快 上 在环上的 点数是 num , 这个联通块有all个点,之后我们给定方向,利用num,all我们就可以求出 这个联通块不存在环的 方案数了

  那么 对于答案 就是所有联通快不存在环 的 方案数 的乘积

 

#include<bits/stdc++.h>
using namespace std; #pragma comment(linker, "/STACK:102400000,102400000")
#define ls i<<1
#define rs ls | 1
#define mid ((ll+rr)>>1)
#define pii pair<int,int>
#define MP make_pair typedef long long LL;
const long long INF = 1e18;
const double Pi = acos(-1.0);
const int N = 2e5+, M = 1e6+, inf = 2e9, mod = 1e9+; int n,mx = -,f[N],al,num;
int deep[N],vis[N];
vector<int >G[N];
void add(int u,int v){
G[u].push_back(v);
} LL quick_pow(LL x,LL p) {
if(!p) return ;
LL ans = quick_pow(x,p>>);
ans = ans*ans%mod;
if(p & ) ans = ans*x%mod;
return ans;
} void dfs(int u,int fa,int dep) {
al++;
deep[u] = dep;
vis[u] = ;
for(int i = ; i < G[u].size(); ++i) {
int to = G[u][i];
if(!vis[to])dfs(to,u,dep+);else if(to!=fa) num = (abs(deep[to] - deep[u]) + );
}
}
LL in[N];
int main() {
LL ans = ;
in[] = ;
scanf("%d",&n);
for(int i = ; i < N; ++i) in[i] = 1LL * in[i-] * % mod; for(int i = ; i <= n; ++i) {scanf("%d",&f[i]);add(i,f[i]);add(f[i],i);} for(int i = ; i <= n; ++i) {
al = num = ;
if(vis[i]) continue;
dfs(i,,);
if(al == ) num = ;
ans = (ans * (in[num]-2LL) % mod * in[al-num]) % mod;
}
printf("%I64d\n",(ans+mod) % mod);
return ;
}

Codeforces Round #369 (Div. 2) D. Directed Roads dfs求某个联通块的在环上的点的数量的更多相关文章

  1. Codeforces Round #369 (Div. 2) D. Directed Roads —— DFS找环 + 快速幂

    题目链接:http://codeforces.com/problemset/problem/711/D D. Directed Roads time limit per test 2 seconds ...

  2. Codeforces Round #369 (Div. 2) D. Directed Roads (DFS)

    D. Directed Roads time limit per test 2 seconds memory limit per test 256 megabytes input standard i ...

  3. Codeforces Round #369 (Div. 2) D. Directed Roads 数学

    D. Directed Roads 题目连接: http://www.codeforces.com/contest/711/problem/D Description ZS the Coder and ...

  4. Codeforces Round #369 (Div. 2)-D Directed Roads

    题目大意:给你n个点n条边的有向图,你可以任意地反转一条边的方向,也可以一条都不反转,问你有多少种反转的方法 使图中没有环. 思路:我们先把有向边全部变成无向边,每个连通图中肯定有且只有一个环,如果这 ...

  5. Codeforces Round #302 (Div. 2) D - Destroying Roads 图论,最短路

    D - Destroying Roads Time Limit: 20 Sec  Memory Limit: 256 MB 题目连接 http://codeforces.com/contest/544 ...

  6. Codeforces Round #369 (Div. 2)---C - Coloring Trees (很妙的DP题)

    题目链接 http://codeforces.com/contest/711/problem/C Description ZS the Coder and Chris the Baboon has a ...

  7. Codeforces Round #369 (Div. 2) C. Coloring Trees(dp)

    Coloring Trees Problem Description: ZS the Coder and Chris the Baboon has arrived at Udayland! They ...

  8. Codeforces Round #302 (Div. 2) D. Destroying Roads 最短路

    题目链接: 题目 D. Destroying Roads time limit per test 2 seconds memory limit per test 256 megabytes input ...

  9. Codeforces Round #369 (Div. 2) C. Coloring Trees(简单dp)

    题目:https://codeforces.com/problemset/problem/711/C 题意:给你n,m,k,代表n个数的序列,有m种颜色可以涂,0代表未涂颜色,其他代表已经涂好了,连着 ...

随机推荐

  1. 关于Intent ,Task, Activity的理解

    看到一篇好文章,待加工 http://hi.baidu.com/jieme1989/item/6e5f41d3f65be848ddf9beb9 第三篇 http://blog.csdn.net/luo ...

  2. MySQL(MariaDB)的 SSL 加密复制

    背景: 在默认的主从复制过程或远程连接到MySQL/MariaDB所有的链接通信中的数据都是明文的,在局域网内连接倒问题不大:要是在外网里访问数据或则复制,则安全隐患会被放大很多.由于项目要求需要直接 ...

  3. 【剑指offer】题目36 数组中的逆序对

    数组中任取两个数字,如果前面的数字大于后面的数字称为一个逆序对 如:1,2,1,2,1 有3个逆序对 思路:知道O(N2)肯定是错的.开始想hash,试图找到O(n)的算法,想了很久,找不到.后来想到 ...

  4. IOS- DocumentInteraction Controllerl的使用

    iOS提供了使用其他app预览文件的支持,这就是Document Interaction Controller.此外,iOS也支持文件关联,允许其他程序调用你的app打开某种文件.而且,从4.2开始, ...

  5. MyBatis之多表关联查询

    1使用resultType.ResultMap处理返回结果 处理返回结果 resultType:指定返回值结果的完全限定名,处理多表查询的结果. 多表查询需要定义vo封装查询的结果. 需求:查询部门和 ...

  6. Mysql之mysqlbinlog使用

    mysqlbinlog用于BinLog的显示,备份和重做. 默认情况下,mysqlbinlog是以base-64编码的方式呈现的.如: mysqlbinlog  master_bin.000006   ...

  7. eclipse查看hadoop中文件出现乱码

    出现这个问题, 我首先去找了一下几个问题: 1.文件是否是utf-8 2.上传到Linux中的hadoop, 在Linux下去查看是否乱码 3.上面都没有问题, 就去检查eclipse,将项目工程改成 ...

  8. struts2中一些常用的写法 记录

    1.对日期进行处理 Date current = new Date(); java.text.SimpleDateFormat sdf = new java.text.SimpleDateFormat ...

  9. js 闭包原理理解

    问题?什么是js(JavaScript)的闭包原理,有什么作用? 一.定义 官方解释:闭包是一个拥有许多变量和绑定了这些变量的环境的表达式(通常是一个函数),因而这些变量也是该表达式的一部分. 很显然 ...

  10. 数据结构和算法 – 10.集合

    集合: 联合.交叉.差异.子集 using System; using System.Collections; using System.Collections.Generic; using Syst ...