动态规划 - 最长公共子序列(LCS)
最长公共子序列也是动态规划中的一个经典问题。
有两个字符串 S1 和 S2,求一个最长公共子串,即求字符串 S3,它同时为 S1 和 S2 的子串,且要求它的长度最长,并确定这个长度。这个问题被我们称为最长公共子序列问题。
与求最长递增子序列一样,我们首先将原问题分割成一些子问题,我们用 dp[i][j]表示 S1 中前 i 个字符与 S2 中前 j 个字符分别组成的两个前缀字符串的最长公共子串长度。
显然的,当 i、 j 较小时我们可以直接得出答案,如 dp[0][j]必等于 0。那么,假设我们已经求得 dp[i][j](0<=i<x,0<=j<y)的所有值,考虑如何由这些值继而推得 dp[x][y],求得 S1 前 x 个字符组成的前缀子串和 S2 前 y 个字符 组成的前缀子串的最长公共子序列长度。若 S1[x] = =S2[y],即 S1 中的第 x 个字 符和 S2 中的第 y 个字符相同,同时由于他们都是各自前缀子串的最后一个字符, 那么必存在一个最长公共子串以 S1[x]或 S2[y]结尾,其它部分等价于 S1 中前 x-1 个字符和 S2中前 y-1个字符的最长公共子串。所以这个子串的长度比 dp[x-1][y-1] 又增加 1,即 dp[x][y] = dp[x-1][y-1] + 1。
相反的,若 S1[x] != S2[y],此时其最长 公共子串长度为 S1 中前 x-1 个字符和 S2 中前 y 个字符的最长公共子串长度与 S1 中前 x 个字符和 S2 中前 y-1 个字符的最长公共子串长度的较大者,即在两种 情况下得到的最长公共子串都不会因为其中一个字符串又增加了一个字符长度 发生改变。综上所述, dp[x][y] = max{dp[x-1][y],dp[x][y-1]}。
最长公共子序列的递推条件
假设有两个字符串S1和S2,其中S1的长度为n,S2的长度为m,用dp[i][j]表示S1前i个字符组成的前缀子串与S2前j个字符组成的前缀子串的最长公共子串长度,如下:
dp[0][j] = dp[i][0] = 0,其中j>=0 && j<=m,i>=0 && i<=n;
dp[i][j] = dp[i-1][j-1]+1;(S1[i] = S2[j])
dp[i][j] = max{dp[i-1][j],dp[i][j-1]};(S1[i] != S2[j])
最后可以求得dp[n][m]中保存的值即为两个原始字符串的最长公共子序列长度。
按照上面的公式可以写出最长公共子序列的算法
#include "stdafx.h"
#include <iostream>
#include <string>
using namespace std; #define MAXSIZE 101
char str1[MAXSIZE];
char str2[MAXSIZE];
//'l'表示dp[i][j] = dp[i][j] = dp[i - 1][j];
//‘q’表示dp[i][j] = dp[i][j] = dp[i - 1][j];
//'u'表示dp[i][j] = dp[i][j - 1];
char path[MAXSIZE][MAXSIZE];
int dp[MAXSIZE][MAXSIZE]; void printLCS(int i, int j)
{
if (i == || j == )
return;
if (path[i][j] == 'q')
{
printLCS(i - , j - );
cout << str1[i-] << ' ';
}
else if (path[i][j] == 'u')
printLCS(i - , j);
else
printLCS(i, j - ); } int main()
{
int n, m;
cin >> str1 >> str2;
n = strlen(str1);
m = strlen(str2);
//初始化
for (int i = ; i < n;i++)
for (int j = ; j < m; j++)
dp[i][j] = ;
for (int i = ; i <= n; i++)
for (int j = ; j <= m; j++)
{
if (str1[i - ] == str2[j - ])
{
dp[i][j] = dp[i - ][j - ] + ;
path[i][j] = 'q';
} else
{
if (dp[i - ][j] >= dp[i][j - ])
{
dp[i][j] = dp[i - ][j];
path[i][j] = 'u';
} else
{
dp[i][j] = dp[i][j - ];
path[i][j] = 'l';
} }
} cout << dp[n][m] << endl;
printLCS(n, m);
return ;
}
测试实例:
str1 = “abcbdab”;str2 = "bdcaba"。
输出如下:

虽然str1和str2的最长公共子序列有多个,根据dp[n][m]进行递归输出,只输出一个最长公共子序列。
动态规划 - 最长公共子序列(LCS)的更多相关文章
- 动态规划 最长公共子序列 LCS,最长单独递增子序列,最长公共子串
LCS:给出两个序列S1和S2,求出的这两个序列的最大公共部分S3就是就是S1和S2的最长公共子序列了.公共部分 必须是以相同的顺序出现,但是不必要是连续的. 选出最长公共子序列.对于长度为n的序列, ...
- 动态规划----最长公共子序列(LCS)问题
题目: 求解两个字符串的最长公共子序列.如 AB34C 和 A1BC2 则最长公共子序列为 ABC. 思路分析:可以用dfs深搜,这里使用到了前面没有见到过的双重循环递归.也可以使用动态规划,在建 ...
- 动态规划——最长公共子序列LCS及模板
摘自 https://www.cnblogs.com/hapjin/p/5572483.html 这位大佬写的对理解DP也很有帮助,我就直接摘抄过来了,代码部分来自我做过的题 一,问题描述 给定两个字 ...
- 动态规划之最长公共子序列LCS(Longest Common Subsequence)
一.问题描述 由于最长公共子序列LCS是一个比较经典的问题,主要是采用动态规划(DP)算法去实现,理论方面的讲述也非常详尽,本文重点是程序的实现部分,所以理论方面的解释主要看这篇博客:http://b ...
- 《算法导论》读书笔记之动态规划—最长公共子序列 & 最长公共子串(LCS)
From:http://my.oschina.net/leejun2005/blog/117167 1.先科普下最长公共子序列 & 最长公共子串的区别: 找两个字符串的最长公共子串,这个子串要 ...
- 编程算法 - 最长公共子序列(LCS) 代码(C)
最长公共子序列(LCS) 代码(C) 本文地址: http://blog.csdn.net/caroline_wendy 题目: 给定两个字符串s,t, 求出这两个字符串最长的公共子序列的长度. 字符 ...
- C++版 - Lintcode 77-Longest Common Subsequence最长公共子序列(LCS) - 题解
版权声明:本文为博主Bravo Yeung(知乎UserName同名)的原创文章,欲转载请先私信获博主允许,转载时请附上网址 http://blog.csdn.net/lzuacm. C++版 - L ...
- 1006 最长公共子序列Lcs
1006 最长公共子序列Lcs 基准时间限制:1 秒 空间限制:131072 KB 给出两个字符串A B,求A与B的最长公共子序列(子序列不要求是连续的). 比如两个串为: abcicba abdks ...
- POJ 1458 Common Subsequence(最长公共子序列LCS)
POJ1458 Common Subsequence(最长公共子序列LCS) http://poj.org/problem?id=1458 题意: 给你两个字符串, 要你求出两个字符串的最长公共子序列 ...
- 51Nod 1006:最长公共子序列Lcs(打印LCS)
1006 最长公共子序列Lcs 基准时间限制:1 秒 空间限制:131072 KB 分值: 0 难度:基础题 收藏 关注 给出两个字符串A B,求A与B的最长公共子序列(子序列不要求是连续的). ...
随机推荐
- JavaScript基础--小案例:在网页指定位置弹出错误信息(十二)
案例分析:点击按钮后,在网页上指定区域,提示错误信息!5秒后,错误信息提示自动消失! <script languag="javascript" type="text ...
- Linq二 LinqToSql
虽然微软已经停止更新了LinqToSql,但是目前的已完全满足目前的需求. 第一步:添加LinqToSql 第二步:将其关联的Sqlserver数据库 第三步:数据库已变成实体类 第四步:可以对数据库 ...
- oracle 拼接一张表所有字段
declare t_name varchar2(100) := upper('dba_tab_columns'); cursor c_col is select column_name from db ...
- segues的类型
Name Interface Builder symbol Description Show Present the content in the detail or master area depe ...
- PHP性能分析 - ngnx日志分析
最终结果展示图: 图解:响应时间在40ms以内的请求数占请求总量的7%,40到80ms的的请求数占32.9%,依次类推... 性能问题有很多种可能,普通的情况通过xhprof可查得主要的性能损耗.但有 ...
- JavaScript原型学习笔记
1 理解JavaScript原型 什么是原型? 原型是一个对象,其他对象可以通过它实现属性继承. 任何一个对象都可以成为原型么? 是 哪些对象有原型 所有的对象在默认的情况下都有一个原型,因为原型本身 ...
- Sublime Text 3安装插件指南
Sublime Text已经很用得很广泛,一般普通的功能已经够用,加入一些插件能些许加快开发. 安装 Package Control 有了插件控制器Package Control安装起来就很轻松了. ...
- Java条形码生成技术-Barcode4j
背景 目前二维码的应用场景已经遍布各类互联网平台,通常是将产品/商品的唯一编号存储于二维码中以做扫码识别. 而用于生产环境的条形码技术仍然存在,如硬件设备制造.供应.物流运输等等. 在常见的产品信息管 ...
- 030. asp.net中DataList数据绑定跳转(两种方式)的完整示例
前台代码: <%@ Page Language="C#" AutoEventWireup="true" CodeFile="Default.as ...
- Apache Shiro简介
作者:var dump链接:https://zhuanlan.zhihu.com/p/23300328最近要做一个基于Java C/S架构的项目,主要涉及权限管理这方面的东西.了解到Apache Sh ...