BZOJ 1408: [Noi2002]Robot
1408: [Noi2002]Robot
Time Limit: 5 Sec Memory Limit: 64 MB
Submit: 510 Solved: 344
[Submit][Status][Discuss]
Description

Input

Output

Sample Input
2 1
3 2
5 1
Sample Output
6
75
HINT
90号机器人有10个老师,加上它自己共11个。其中政客只有15号;军人有3号和5号;学者有8个,它们的编号分别是:2,6,9,10,18,30,45,90。
Source
分析:
这道题读完题就胜利了...TAT...
其实就是用优(z)美(z)的语言描述了φ函数和μ函数...
需要注意的是φ(1)=0,数互异素数个数的时候不能数2...
ans1和ans2都很好求,因为φ是积性函数,所以我们可以O(n)滴求出...ans3肿么求QAQ...我思考了好久发现自己是zz...所有数的φ之和不就是m么...
减一减就好了...
代码:
#include<algorithm>
#include<iostream>
#include<cstring>
#include<cstdio>
//by NeighThorn
using namespace std;
//大鹏一日同风起,扶摇直上九万里 const int maxn=+,Mod=; int n,beg,end,ans1,ans2,ans3,p[maxn],e[maxn]; inline int power(int x,int y){
int res=;
while(y){
if(y&)
res=res*x%Mod;
(x*=x)%=Mod,y>>=;
}
return res;
} signed main(void){
scanf("%d",&n);beg=,end=n;
for(int i=;i<=n;i++)
scanf("%d%d",&p[i],&e[i]);
if(p[]==)
beg++;
for(int i=beg;i<=end;i++){
int tmp1=ans1,tmp2=ans2;
(ans1+=tmp2*(p[i]-)%Mod)%=Mod;
(ans2+=(tmp1+)*(p[i]-)%Mod)%=Mod;
}
ans3=;
for(int i=;i<=n;i++)
(ans3*=power(p[i],e[i]))%=Mod;
ans3=(((ans3-+Mod)%Mod-ans1+Mod)%Mod-ans2+Mod)%Mod;
printf("%d\n%d\n%d\n",ans1,ans2,ans3);
return ;
}//Cap ou pas cap. Cap.
By NeighThorn
BZOJ 1408: [Noi2002]Robot的更多相关文章
- bzoj 1408 [Noi2002]Robot(欧拉函数)
[题目链接] http://www.lydsy.com/JudgeOnline/problem.php?id=1408 [题意] 求m的所有约数中,满足可以分解成(奇数个不同素数/偶数个不同素数/其 ...
- 【BZOJ1408】[Noi2002]Robot DP+数学
[BZOJ1408][Noi2002]Robot Description Input Output Sample Input 3 2 1 3 2 5 1 Sample Output 8 6 75 HI ...
- 【bzoj1408】 Noi2002—Robot
http://www.lydsy.com/JudgeOnline/problem.php?id=1408 (题目链接) 题意 定义了3种数,分别求这3种数的φ的和,其中φ(1)=0. Solution ...
- 【扩展欧几里得】Bzoj 1407: [Noi2002]Savage
Description Input 第1行为一个整数N(1<=N<=15),即野人的数目.第2行到第N+1每行为三个整数Ci, Pi, Li (1<=Ci,Pi<=100, 0 ...
- BZOJ 1407: [Noi2002]Savage( 数论 )
枚举答案, 然后O(N^2)枚举野人去判他们是否会在有生之年存在同山洞. 具体做法就是: 设第x年相遇, 则 Ci+x*Pi=Cj+x*Pj (mod M), 然后解同余方程. 复杂度应该是O(ans ...
- 题解【luogu P2421 bzoj P1407 [NOI2002]荒岛野人】
洛谷题目链接 bzoj题目链接 题目大意:给定\(n\)组\(C_i, P_i, L_i\),求最小的\(M\)使得对于任意的\(i,j (1 \leq i, j \leq n)\) \[C_i + ...
- [NOI2002] Robot 解题报告(数论+DP)
题目链接:https://www.lydsy.com/JudgeOnline/problem.php?id=1408 Description 3030年,Macsy正在火星部署一批机器人. 第1秒,他 ...
- bzoj 1407: [Noi2002]Savage
Description 解题报告: 因为给定答案范围,暴力枚举时间,然后再两两枚举野人,判断是否有可能在某一年相遇,我们设这一年为\(x\),那么显然相交的条件是: \(x*(p[i]-p[j])+y ...
- 【bzoj1408】[Noi2002]Robot 数论+dp
题目描述 输入 输出 样例输入 3 2 1 3 2 5 1 样例输出 8 6 75 题解 语文题+数论+dp 花了大段讲述什么叫mu,什么叫phi,只是新定义的mu将2看作有平方因子,新定义的phi( ...
随机推荐
- git stash提交PR的正确步骤&git squash技术
1.git stash梳理 1.1git stash的克隆与同步 首先整理下git stash的逻辑是这样 在本地做出了新的修改,提交时显示当前的版本不是最新版本,这时就需要先pull一下自己代码仓库 ...
- setTimeout和setInterval
setTimeout(methodName, interval); //间隔时间单位为毫秒,表示interval毫秒后执行方法methodName setInterval(methodName, in ...
- 两个Service之间相互监视的实现
在实际开发中可能需要用到两个Service相互监视的情况,本示例就是实现此功能以作参考. 服务A: public class ServiceA extends Service { private st ...
- Xcode8 pod install 报错 “Generating Pods project Abort trap
Xcode8 pod install 报错 "Generating Pods project Abort trap 今天在写一个新项目的时候,使用cocoapods在执行 $ pod ins ...
- 【网络编程】TCP/IP、UDP、网络概…
计算机刚刚发明出来的时候,两台计算机之间是无法通信的,为了使计算机之间能够进行数据的交流,制定了OSI(Open SystemInterconnection)开放系统互联模型,而TCP/IP(我们所使 ...
- 【Gson】2.2.4 StackOverflowError 异常
正文 错误: 08-09 09:56:51.904: E/AndroidRuntime(16384): java.lang.StackOverflowError 08-09 09:56:51.904: ...
- java 实现(代码) -- 水仙花数 + 杨辉三角形
/* 在控制台输出所有的“水仙花数” 水仙花:100-999 在以上数字范围内:这个数=个位*个位*个位+十位*十位*十位+百位*百位*百位 例如:xyz=x^3 +y^3 +z^3 怎么把三位数字拆 ...
- iOS 学习 - 10下载(4) NSURLSession 会话 篇
NSURLConnection通过全局状态来管理cookies.认证信息等公共资源,这样如果遇到两个连接需要使用不同的资源配置情况时就无法解决了,但是这个问题在NSURLSession中得到了解决.N ...
- chrome插件——Vimium 键盘手福利
chrome插件——Vimium 键盘手福利 金刚 chrome chrome插件 Vimium 一直希望纯键盘操作,但是在浏览网页的时候,发现还是很难做到这点的.因为网页浏览的时候会有 各种各样的内 ...
- WebMatrix之WebMatrix.Data
WebMatrix之WebMatrix.Data WebMatrix数据访问系列目次: WebMatrix之数据访问 WebMatrix之WebMatrix.Data WebMatrix之WebMat ...