输入整数a,b (0<a<b<500) ,输出最佳表达式 使得加数个数尽量小,如果加数个数相同,则最小的分数越大越好 ,输出表达式

考虑从小到大枚举深度上限maxd,每次执行只考虑深度不超过maxd的结点。当前的结点n的深度为g(n),乐观估价函数为h(n),则当

g(n)+h(n)>maxd时应该剪枝,这就是IDA*算法。

#include<iostream>
#include<string>
#include<cmath>
#include<cstring>
#include<vector>
#include<map>
#include<set>
#include<algorithm>
#include<queue>
#include<stack>
#include<sstream>
#include<cstdio>
#define INF 0x3f3f3f3f
//const int maxn = 1e6 + 5;
const double PI = acos(-1.0);
typedef long long ll;
using namespace std; int a, b, maxd; ll gcd(ll a, ll b) {
return b == ? a : gcd(b, a % b);
} inline int get_first(ll a, ll b) {
return b / a + ;
} const int maxn = + ; ll v[maxn], ans[maxn]; bool better(int d) {
for (int i = d; i >= ; i--) if (v[i] != ans[i]) {
return ans[i] == - || v[i] < ans[i];
}
return false;
} bool dfs(int d, int from, ll aa, ll bb) {
if (d == maxd) {
if (bb % aa) return false;
v[d] = bb / aa;
if (better(d)) memcpy(ans, v, sizeof(ll) * (d + ));
return true;
}
bool ok = false;
from = max(from, get_first(aa, bb));
for (int i = from;; i++) {
if (bb * (maxd + - d) <= i * aa) break;
v[d] = i;
ll b2 = bb * i;
ll a2 = aa * i - bb;
ll g = gcd(a2, b2);
if (dfs(d + , i + , a2 / g, b2 / g)) ok = true;
}
return ok;
} int main() {
int kase = ;
while (scanf("%d%d", &a, &b) != EOF) {
int ok = ;
for (maxd = ; maxd <= ; maxd++) {
memset(ans, -, sizeof ans);
if (dfs(, get_first(a, b), a, b)) {
ok = ;
break;
}
}
printf("Case %d: ", ++kase);
if (ok) {
printf("%d/%d=",a,b);
for (int i = ; i < maxd; i++) printf("1/%lld+", ans[i]);
printf("1/%lld\n", ans[maxd]);
}
else printf("No solution\n");
}
return ;
}

埃及分数问题 迭代加深搜索/IDA*的更多相关文章

  1. vijos1308 埃及分数(迭代加深搜索)

    题目链接:点击打开链接 题目描写叙述: 在古埃及.人们使用单位分数的和(形如1/a的, a是自然数)表示一切有理数.如:2/3=1/2+1/6,但不同意2/3=1/3+1/3,由于加数中有同样的.对于 ...

  2. UVA12558 Egyptian Fractions (HARD version) (埃及分数,迭代加深搜索)

    UVA12558 Egyptian Fractions (HARD version) 题解 迭代加深搜索,适用于无上界的搜索.每次在一个限定范围中搜索,如果无解再进一步扩大查找范围. 本题中没有分数个 ...

  3. [Vijos1308]埃及分数(迭代加深搜索 + 剪枝)

    传送门 迭代加深搜索是必须的,先枚举加数个数 然后搜索分母 这里有一个强大的剪枝,就是确定分母的范围 #include <cstdio> #include <cstring> ...

  4. Vijos 1308 埃及分数(迭代加深搜索)

    题意: 输入a.b, 求a/b 可以由多少个埃及分数组成. 埃及分数是形如1/a , a是自然数的分数. 如2/3 = 1/2 + 1/6, 但埃及分数中不允许有相同的 ,如不可以2/3 = 1/3 ...

  5. 埃及分数 迭代加深搜索 IDA*

    迭代加深搜索 IDA* 首先枚举当前选择的分数个数上限maxd,进行迭代加深 之后进行估价,假设当前分数之和为a,目标分数为b,当前考虑分数为1/c,那么如果1/c×(maxd - d)< a ...

  6. UVA 11212 Editing a Book [迭代加深搜索IDA*]

    11212 Editing a Book You have n equal-length paragraphs numbered 1 to n. Now you want to arrange the ...

  7. BZOJ1085: [SCOI2005]骑士精神 [迭代加深搜索 IDA*]

    1085: [SCOI2005]骑士精神 Time Limit: 10 Sec  Memory Limit: 162 MBSubmit: 1800  Solved: 984[Submit][Statu ...

  8. 7-10Editing aBook uva11212(迭代加深搜索 IDA*)

    题意:  给出n( 2<=n<=9) 个乱序的数组  要求拍成升序  每次 剪切一段加上粘贴一段算一次  拍成1 2 3 4 ...n即可     求排序次数 典型的状态空间搜索问题   ...

  9. uva 11212 - Editing a Book(迭代加深搜索 IDA*) 迭代加深搜索

    迭代加深搜索 自己看的时候第一遍更本就看不懂..是非常水,但智商捉急也是没有办法的事情. 好在有几个同学已经是做过了这道题而且对迭代加深搜索的思路有了一定的了解,所以在某些不理解的地方询问了一下他们的 ...

随机推荐

  1. python批量提取哔哩哔哩bilibili视频

    # -*- coding: utf-8 -*- """ Created on Tue Jan 29 13:26:41 2019 @author: kwy "&q ...

  2. CentOS 7 搭建Cobbler实现自动化安装系统

    1.安装软件包 # yum -y install epel-release     #安装EPEL源 # yum -y install cobbler dhcp pykickstart 2.启动cob ...

  3. sudo: gunicorn: command not found的问题

    在阿里云的ubantu云服务器上,python3 通过pip安装gunicorn 在命令行运行gunicorn时提示找不到命令 可以删除已经安装的gunicorn 解决办法: which pip #找 ...

  4. Day1-A-POJ-3295

    由题意知,有5种操作,5个未知数,可0可1,一串操作问是否恒为1,最多100个字符,直接栈模拟所有情况即可 代码如下: int p, q, r, s, t; bool calculate(string ...

  5. 「luogu1613」跑路

    传送门 Luogu 解题思路 对于所有可以用 \(2^k\) 形式表示的 \(dis(i,j)\),将\(i,j\)之间的 \(dis\) 置为 \(1\),可以用倍增 \(\text{Floyd}\ ...

  6. 组件公用数据 Vue.observable( )

    注意(适合小项目,不用vuex的情况下使用) 1.创建store.js 最好和main.js平级创建文件 import Vue from 'vue' export const store = Vue. ...

  7. 六 一对多关联查询&关联查询小结

    一对多关联查询:基于用户表关联查询订单表 在pojo中,一的一方方式多的一方的集合 在代理映射中配置查询方法,ResultMap一对多关系(注意:当两表有字段重名时,在一方字段设置别名,以免造成查询混 ...

  8. Python字符串(二)

    四.类型转换 1. 基本语法: 类型名(数据) --- 将指定数据转换成指定类型 说明:类型名 -任何python支持的,或者自定的类型都可以数据 -需要转换的对象,类型不同要求可能不一样 2. 转换 ...

  9. leetcode LRU缓存机制(list+unordered_map)详细解析

    运用你所掌握的数据结构,设计和实现一个  LRU (最近最少使用) 缓存机制.它应该支持以下操作: 获取数据 get 和 写入数据 put . 获取数据 get(key) - 如果密钥 (key) 存 ...

  10. CNN反向传播算法公式

    网络结构(6c-2s-12c-2s): 初始化: \begin{align}\notag W \sim U(- \frac{\sqrt{6}}{\sqrt{n_j+n_{j+1}}} , \frac{ ...