Milk Pumping G&Milk Routing S

双倍经验时间

洛谷P5837 [USACO19DEC]Milk Pumping G

洛谷P3063 [USACO12DEC]Milk Routing S

题目模型

给定\(N\)个点和\(M\)条边,对于每条边,给定连接的两个端点以及这条边的花费和“流量”

  1. 设这条路径上所有边的花费总和为\(L\)

  2. 设这条路径上所有边中“流量”值最小的为\(C\)

要求找出一条\(1\)到\(N\)的路径满足:\(L\)尽可能小的同时\(C\)尽可能大(注意是一条路径上的L和C)


解题思路

如果是单独求\(L\)或者\(C\)中的一个,那么我们很容易便能解决

但是如果要求同时维护\(L\)和\(C\)两个值,而且这两个值还是矛盾的,那我们怎么做呢?

(这里的矛盾指:\(L\)要尽量小,而同一条道路的\(C\)又要尽量大)

  • First

首先我们先来考虑用一个最短路同时维护这两个值,但经过一番思索,我们会发现无法做到

为什么?因为这两个值矛盾啊!相矛盾的两个值怎么能在同一个最短路中解决呢?

  • Second

否定了同时维护的想法,我们只能考虑分开维护,分开维护?多个最短路?

肯定也不行,为什么?维护出来的\(L\)、\(C\)分别对应的最短路径不一定是同一条啊!最短路径都不是同一条那\(L\)、\(C\)怎么会相对应呢?

  • Third

同时维护和分开维护都不行,那怎么做?

枚举

什么意思?

我们要维护对应的两个值,那我们可以枚举其中一个值,然后再在枚举的这个值的基础上去寻找对应的另一个值呀!

怎么实现呢?

假设我们枚举\(Ci\),然后跑最短路去求解对应的\(Li\),在跑最短路时判断当前点\(v\)的\(Cv\)值是否小于\(Ci\),如果小于那么就不管这个点(因为我们枚举的\(Ci\)已经是假定的最小流量值,那么所有小于\(Ci\)肯定没有用)

为什么\(Ci\)是假定的最小流量值?不是求最大的\(C\)吗?

我们不断枚举\(Ci\),找到所有对应的\(Li\),然后用一个\(ans\)来记录最终的答案,最终找到的一定是最大的\(C\)和最小的\(L\)


代码Code

#include <bits/stdc++.h>
using namespace std;
int n,m,a,b,c,f,tot,ans;
int dis[100010],vis[100010],head[100010];
priority_queue<pair<int,int> > shan; struct node {
int to,net,liu,val;
} e[100010]; inline void add(int u,int v,int w,int l) {
e[++tot].to=v;
e[tot].net=head[u];
e[tot].liu=l;
e[tot].val=w;
head[u]=tot;
} inline void dijkstra(int l) {
memset(dis,0x3f,sizeof(dis));
memset(vis,0,sizeof(vis));
dis[1]=0;
shan.push(make_pair(0,1));
while(!shan.empty()) {
int x=shan.top().second;
shan.pop();
if(vis[x]==1) continue;
vis[x]=1;
for(register int i=head[x];i;i=e[i].net) {
int v=e[i].to;
if(e[i].liu<l) continue;
if(dis[v]>dis[x]+e[i].val) {
dis[v]=dis[x]+e[i].val;
shan.push(make_pair(-dis[v],v));
}
}
}
} int main() {
scanf("%d%d",&n,&m);
for(register int i=1;i<=m;i++) {
scanf("%d%d%d%d",&a,&b,&c,&f);
add(a,b,c,f);
add(b,a,c,f);
}
for(register int li=1;li<=1000;li++) {
dijkstra(li);
if(dis[n]!=0x3f) ans=max(ans,li*1000000/dis[n]);
}
printf("%d",ans);
return 0;
}
#include <bits/stdc++.h>
using namespace std;
int n,m,x,u,v,w,c,tot,ans=20050206;
int dis[510005],vis[510005],head[510005],flag[510005];
priority_queue<pair<int,int> > shan; struct node {
int to,net,val,liu;
} e[510005]; inline void add(int u,int v,int w,int l) {
e[++tot].to=v;
e[tot].val=w;
e[tot].liu=l;
e[tot].net=head[u];
head[u]=tot;
} inline void dijkstra(int li) {
for(register int i=1;i<=n;i++) {
vis[i]=0;
dis[i]=20050206;
}
dis[1]=0;
shan.push(make_pair(0,1));
while(!shan.empty()) {
int xx=shan.top().second;
shan.pop();
if(vis[xx]) continue;
vis[xx]=1;
for(register int i=head[xx];i;i=e[i].net) {
int v=e[i].to;
if(e[i].liu<li) continue;
if(dis[v]>dis[xx]+e[i].val) {
dis[v]=dis[xx]+e[i].val;
shan.push(make_pair(-dis[v],v));
}
}
}
} int main() {
scanf("%d%d%d",&n,&m,&x);
for(register int i=1;i<=m;i++) {
scanf("%d%d%d%d",&u,&v,&w,&c);
flag[i]=c;
add(u,v,w,c);
add(v,u,w,c);
}
for(register int i=1;i<=m;i++) {
dijkstra(flag[i]);
if(dis[n]!=20050206) ans=min(ans,dis[n]+x/flag[i]);
}
printf("%d",ans);
return 0;
}

自认为讲得还是很详细的,如果还有什么不懂的欢迎留言qwq

最后,感谢一下RHL大佬对我的指导


Milk Pumping G&Milk Routing S 题解的更多相关文章

  1. 洛谷 P5837 [USACO19DEC]Milk Pumping G (单源最短路,dijkstra)

    题意:有一\(n\)个点,\(m\)条边的双向图,每条边都有花费和流量,求从\(1\)~\(n\)的路径中,求\(max\frac{min(f)}{\sum c}\). 题解:对于c,一定是单源最短路 ...

  2. P5837 [USACO19DEC]Milk Pumping G

    题目描述 Farmer John 最近为了扩张他的牛奶产业帝国而收购了一个新的农场.这一新的农场通过一个管道网络与附近的小镇相连,FJ 想要找出其中最合适的一组管道,将其购买并用来将牛奶从农场输送到小 ...

  3. 【题解】[USACO19DEC]Milk Visits G

    题目戳我 \(\text{Solution:}\) 这题不要把思想局限到线段树上--这题大意就是求路径经过的值中\(x\)的出现性问题. 最开始的想法是值域线段树--看了题解发现直接\(vector\ ...

  4. 【luogu P3063 [USACO12DEC]牛奶的路由Milk Routing】 题解

    题目链接:https://www.luogu.org/problemnew/show/P3063#sub 我很好奇这道题为什么没被收入SPFA好题 #include <cstdio> #i ...

  5. 题解 P5837 【[USACO19DEC]Milk Pumping】

    这题其实想法挺简单的,因为他只需要简单的把每个点的花费和流量用dp记下来就好了 1.怎么记: 首先考虑dp的状态.由于所在的点和流量都要记,所以dp开二维,一维记所在的点,另一维记去哪 //dp[i] ...

  6. Milk Pumping

    今天第一次正式打个人定位赛,还是太菜,这题连枚举加最短路都没想到,显然菜是原罪. 题面: : 题解:其实方法很多,千万别浪到网络流用dinic求最大网络流求的最小费用,这题不一样.最大流/最小费用 不 ...

  7. P5838 [USACO19DEC]Milk Visits G

    发现是一道比较裸的树上莫队,于是就开始刚,然后发现好像是最难的一道题--(本题解用于作者加深算法理解,也欢迎各位的阅读) 题意 给你一棵树,树有点权,询问一条路径上是否有点权为 \(c\) 的点. 题 ...

  8. buaacoding_2018算法期末上机G题.地铁建设题解

    // 标注:本文旨在为博主确立一种题解的基本范式,以避免博主的题解流于AC代码的粘贴.此基本范式为:完整而简洁明了的思路及其推导说明,力图触及问题的本质并衍生对同类问题的思路分析,使得题解具有泛用性, ...

  9. BNUOJ48605International Collegiate Routing Contest 题解

    题目大意: 给你一些子网,求它们在整个网段的补集. 思路: 将子网转换成二进制建一棵Trie,直接DFS搜到没有了就记下来输出.注意:所给的子网会有交集,若搜到结尾就不向下搜了. 代码: #inclu ...

随机推荐

  1. (Java实现) 洛谷 P1605 迷宫

    题目背景 迷宫 [问题描述] 给定一个N*M方格的迷宫,迷宫里有T处障碍,障碍处不可通过.给定起点坐标和 终点坐标,问: 每个方格最多经过1次,有多少种从起点坐标到终点坐标的方案.在迷宫 中移动有上下 ...

  2. 一个Redis查询案例

    1.远程登陆进服务器 使用ssh连接至Linux服务器中 2.接入redis集群 redis-cli -h 10.1.8.12 -p 29000 3.执行查询命令 根据userid查询用户的最近在线时 ...

  3. spring Cloud服务注册中心Eureka集群

    spring Cloud服务注册中心Eureka集群配置: 在application.yml文件加以下配置: server: port: 8761 tomcat: uri-encoding: UTF- ...

  4. Zabbix+Orabbix监控oracle数据库表空间

    Orabbix 是设计用来为 zabbix 监控 Oracle 数据库的插件,它提供多层次的监控,包括可用性和服务器性能指标. 它提供了从众多 oracle 实例采集数据的有效机制,进而提供此信息的监 ...

  5. Python + MySQL 批量查询百度收录

    做SEO的同学,经常会遇到几百或几千个站点,然后对于收录情况去做分析的情况 那么多余常用的一些工具在面对几千个站点需要去做收录分析的时候,那么就显得不是很合适. 在此特意分享给大家一个批量查询百度收录 ...

  6. 小师妹学JavaIO之:NIO中Channel的妙用

    目录 简介 Channel的分类 FileChannel Selector和Channel DatagramChannel SocketChannel ServerSocketChannel Asyn ...

  7. ubuntu12.04 dnw2 fl2440 配置

    1.安装libusb-dev sudo apt-get install libusb-dev 2.dnw2编译配置 源码如下,将其保存为dnw2.c 编译命令 gcc dnw2.c -o dnw2 - ...

  8. 构建操作mysql的类

    <?phpclass PdoMySQL{ public static $config=array();//设置连接参数,配置信息 public static $link=null;//保存连接标 ...

  9. Flume-0.9.4和Hbase-0.96整合

    这几天由于项目的需要,需要将Flume收集到的日志插入到Hbase中,有人说,这不很简单么?Flume里面自带了Hbase sink,可以直接调用啊,还用说么?是的,我在本博客的<Flume-1 ...

  10. 曹工改bug:centos下,mongodb开机不能自启动,systemctl、rc.local都试了,还是不行,要不要放弃?

    问题背景 最近装个centos 7.6的环境,其中,基础环境包括,redis.nginx.mongodb.fastdfs.mysql等,其中,自启动使用的是systemctl,其他几个组件,都没啥问题 ...