日期:2019/5/22

关键词:操作系统;OS;保护模式;A20地址线激活;分页开启;二级页表的设置

PS:OSLAB实验课的整理。

本文主要内容是分析操作系统中一个简易的MBR。

建议先阅读:https://www.cnblogs.com/sinkinben/p/10888599.html

宏定义和数据定义

%define CR0_PE      (1 << 0)

%define CR0_MP      (1 << 1)

%define CR0_EM      (1 << 2)

%define CR0_TS      (1 << 3)

%define CR0_WP      (1 << 16)

%define CR0_PG      (1 << 31)

%define PTE_PRESENT (1 << 0)

%define PTE_WRITE (1 << 1)

%define OUTTER_PGTBL 0x1000

%define INNER_PGTBL 0x2000

gdt:dw 0,0,0,0 ; dummy

dw 0xFFFF ; limit=4GB

dw 0x0000 ; base address=0

dw 0x9A00 ; code read/exec

dw 0x00CF ; granularity=4096,386

dw 0xFFFF ; limit=4GB

dw 0x0000 ; base address=0

dw 0x9200 ; data read/write

dw 0x00CF ; granularity=4096,386

gdt_desc:

dw 23 ; gdt limit=sizeof(gdt) - 1

dw gdt

dw 0xAA55

实模式:初始化

设置段寄存器。

org 0x7c00

[bits 16]

; First, BIOS loads the bootsector into 0000:7C00.

cli

xor ax, ax

mov ds, ax

mov ss, ax

实模式:A20地址线激活

参考:https://wenku.baidu.com/view/d6efe68fcc22bcd126ff0c00.html

在8086/8088中,地址线20条(A0-A19),可寻址空间220bytes=1MB(可使用内存最大值)。但是寄存器是16位的(CPU可以"看到"216=64KB的内存),所以才引入了段寄存器,引入之后,寻址格式变为[ES:DI],计算方法是ES<<4+DI(这个值是20bit的)。

在这种情况下,CPU可以"看到"的内存的最大地址是:[0xFFFF: 0xFFFF] = ‭0x10FFEF = 1087 KB‬ > 1024KB‬

本来是为了让CPU能看到完整的1MB内存,但是现在却多出了[1024, 1087]这个区间的地址,如果程序访问了这个区间的地址,CPU该如何处理?

答案是:当程序员给出超过1M(100000H-10FFEFH)的地址时,系统并不认为其访问越界而产生异常,而是自动从重新0开始计算。

即:存在映射:1024=>0, 1025=>1以此类推。

但是后来的80286,系统的地址总线发展为24根(A0-A23),这样能够访问的内存可以达到224=16M。

这样使得80286芯片却存在一个问题:如果程序员访问100000H-10FFEFH之间的内存,系统将实际访问这块内存,而不是重新从0开始。

这就导致一个问题:不能在80286上面运行8086/8088的程序。(不能向前兼容,当时80286性能再好也不会有人买)

为了解决这个问题,IBM使用键盘控制器上剩余的一些输出线来管理第21根地址线,即A20 Gate。

  • 如果A20 Gate被打开,则当程序员给出100000H-10FFEFH之间的地址的时候,系统将真正访问这块内存区域;
  • 如果A20 Gate被禁止,则当程序员给出100000H-10FFEFH之间的地址的时候,系统仍然使用8086/8088的方式。

从80286开始出现保护模式,那么A20 Gate就一定需要激活。

如果A20 Gate被禁止(不论给出的地址中A20是什么,CPU将A20看作0处理):

  • 对于80286来说,其地址为24bit,其地址表示为EFFFFF;
  • 对于80386极其随后的32-bit芯片来说,其地址表示为FFEFFFFF。

如果A20禁止,那么访问到的地址不是连续的。

A20地址线的激活是通过一个叫8042的芯片完成的,其编程方法和8259中断控制器类似,但是比8259简单得多。

主要步骤是:

  • 禁止中断(cli)
  • 等待输入缓冲(端口0x64)为空
  • 把0xd1写入端口0x64(0xd1表示下面要准备写数据到输出端口P2,IBM-PC使用P2的位2即P21来控制A20地址线)
  • 等待输入缓冲(端口0x64)为空
  • 把0xdf写入端口0x60。0xdf = 11011111, P21所在bit为1。(0bit是P25)

汇编程序

; Enable A20

wait_8042_1:

in al, 0x64

test al, 0x2

jnz wait_8042_1

mov al, 0xd1

out 0x64, al

wait_8042_2:

in al, 0x64

test al, 0x2

jnz wait_8042_2

mov al, 0xdf

out 0x60, al

实模式:保护模式开启

开启保护模式的主要工作有:

  • 段寄存器初始化
  • GDT的初始化
  • CR0寄存器PE位的设置

参考https://www.cnblogs.com/sinkinben/p/10888599.html

开启保护模式代码

; Switch to protect mode

lgdt [gdt_desc]

mov eax, cr0

or eax, CR0_PE

mov cr0, eax

jmp 0x08:start32

[bits 32]

start32:

; In protect mode

cli

mov ax, 0x10

mov ds, ax

mov es, ax

mov ss, ax

mov esp, 0x10000

保护模式:开启分页

开启分页的主要工作:

  • 二级页表初始化(包括PDE和PTE)
  • 保存页表基地址(CR3)
  • 设置CR0的PG位

PTE表项的格式

其中,31-12bit是该PTE项对应的物理页框号。

其实PDE表项的格式与之类似,32-12bit是PDE项对应的PTE表的基地址。

代码

; Initialize inner page table(页表)

mov eax, PTE_WRITE|PTE_PRESENT ;PTE项的实际内容

mov edi, INNER_PGTBL            ;PTE表在内存中的起始地址

cld

init_pte:

stosd ;eax => [edi]

add eax, 4096 ;每个页面4KB大小,4096=1 0000 0000 0000

个PTE项

; Initialize outter page table

,即PDE[i] = 0

xor eax, eax

mov edi, OUTTER_PGTBL

cld

rep

stosd

个PDE

mov dword [OUTTER_PGTBL+0*4], INNER_PGTBL|PTE_WRITE|PTE_PRESENT ;PDE[0] -> PTE[0]

mov dword [OUTTER_PGTBL+1*4], INNER_PGTBL|PTE_WRITE|PTE_PRESENT ;PDE[1] -> PTE[0]

; Load CR3

mov eax, OUTTER_PGTBL ;页目录基地址

mov cr3, eax

; Enable paging and write-protect

mov eax, cr0

and eax, ~(CR0_EM|CR0_TS)    ;把EM和TS位清零

mov cr0, eax

保护模式:输出字符串

完整代码

%define CR0_PE      (1 << 0)

%define CR0_MP      (1 << 1)

%define CR0_EM      (1 << 2)

%define CR0_TS      (1 << 3)

%define CR0_WP      (1 << 16)

%define CR0_PG      (1 << 31)

%define PTE_PRESENT (1 << 0)

%define PTE_WRITE (1 << 1)

%define OUTTER_PGTBL 0x1000

%define INNER_PGTBL 0x2000

org 0x7c00

[bits 16]

; First, BIOS loads the bootsector into 0000:7C00.

cli

xor ax, ax

mov ds, ax

mov ss, ax

; Enable A20

wait_8042_1:

in al, 0x64

test al, 0x2

jnz wait_8042_1

mov al, 0xd1

out 0x64, al

wait_8042_2:

in al, 0x64

test al, 0x2

jnz wait_8042_2

mov al, 0xdf

out 0x60, al

; Switch to protect mode

lgdt [gdt_desc]

mov eax, cr0

or eax, CR0_PE

mov cr0, eax

jmp 0x08:start32

[bits 32]

start32:

; In protect mode

cli

mov ax, 0x10

mov ds, ax

mov es, ax

mov ss, ax

mov esp, 0x10000

; Initialize inner page table

mov eax, PTE_WRITE|PTE_PRESENT

mov edi, INNER_PGTBL

cld

init_pte:

stosd

loop init_pte

; Initialize outter page table

xor eax, eax

mov edi, OUTTER_PGTBL

cld

rep

stosd

mov dword [OUTTER_PGTBL+0*4], INNER_PGTBL|PTE_WRITE|PTE_PRESENT

mov dword [OUTTER_PGTBL+1*4], INNER_PGTBL|PTE_WRITE|PTE_PRESENT

; Load CR3

mov eax, OUTTER_PGTBL

mov cr3, eax

; Enable paging and write-protect

mov eax, cr0

and eax, ~(CR0_EM|CR0_TS)

or eax, CR0_PG|CR0_WP|CR0_MP

mov cr0, eax

mov esi, msg

mov edi, 0xB8000

label:

mov al, [esi]

mov ah, 0x0c

mov [edi], ax

add edi, 2

inc esi

cmp al, 0

jne label

jmp $

align 8

msg:db "Hello world from sinkinben", 0

gdt:dw 0,0,0,0 ; dummy

dw 0xFFFF ; limit=4GB

dw 0x0000 ; base address=0

dw 0x9A00 ; code read/exec

dw 0x00CF ; granularity=4096,386

dw 0xFFFF ; limit=4GB

dw 0x0000 ; base address=0

dw 0x9200 ; data read/write

dw 0x00CF ; granularity=4096,386

gdt_desc:

dw 23 ; gdt limit=sizeof(gdt) - 1

dw gdt

dw 0xAA55

如何运行?

QEMU硬盘启动:

nasm -f bin -o paging-string.bin paging-string.asm

dd if=paging-string.bin of=paging-string.img count=1 bs=512 conv=notrunc

qemu-system-i386 paging-string.img

OSLab:开启保护模式的更多相关文章

  1. ASM:《X86汇编语言-从实模式到保护模式》第12章:存储器的保护

    12章其实是11章的拓展,代码基本不变,就是在保护模式下展开讨论. ★PART1:存储器的保护机制 1. 修改段寄存器的保护 当执行把段选择子传到段寄存器的选择器部分的时候,处理器固件在完成传送之前, ...

  2. ASM:《X86汇编语言-从实模式到保护模式》第11章:进入保护模式

    ★PART1:进入保护模式 1. 全局描述符表(Global Descriptor Table,GDT)        32位保护模式下,如果要使用一个段,必须先登记,登记的信息包括段的起始地址,段的 ...

  3. Redis 保护模式

    默认 redis 启用了保护模式,即如果是远程链接不能进行 CRUD 等操作,如果进行该操作报错如下 (error) DENIED Redis is running in protected mode ...

  4. 关于80286——《x86汇编语言:从实模式到保护模式》读书笔记15

    一.80286的工作模式 80286首次提出了实模式和保护模式的概念. 实模式:和8086的工作方式相同: 保护模式:提供了存储器管理机制和保护机制,支持多任务. 二.80286的寄存器 (一)通用寄 ...

  5. 32位x86处理器编程导入——《x86汇编语言:从实模式到保护模式》读书笔记08

    在说正题之前,我们先看2个概念. 1.指令集架构(ISA) ISA 的全称是 instruction set architecture,中文就是指令集架构,是指对程序员实际"可见" ...

  6. x86CPU 实模式 保护模式 傻傻分不清楚? 基于Xv6-OS 分析CR0 寄存器

    基于Xv6-OS 分析CR0 寄存器 之前一直认为晕乎乎的...啥?什么时候切换real model,怎么切换,为什么要切换? ------------------------------------ ...

  7. Lab_1:练习3——分析bootloader进入保护模式的过程

    文章链接:https://www.cnblogs.com/cyx-b/p/11809742.html 作者:chuyaoxin 一.实验内容 BIOS将通过读取硬盘主引导扇区到内存,并转跳到对应内存中 ...

  8. x86架构:从实模式进入保护模式

    详细的过程说明参考:(1)  https://www.cnblogs.com/Philip-Tell-Truth/p/5211248.html    (2)x86汇编:从实模式到保护模式 这里简化一下 ...

  9. 【理解OS】1.保护模式概述

    这个系列文章主要目的是为了记录我个人学习保护模式后的总结与一点点的思考.我也是一个学习者,其中由错误在所难免,若各位朋友指出将不胜感激. 1. Intel CPU的运行模式概述 这里我将粗略介绍Int ...

随机推荐

  1. plsql-工具安装部署及使用配置

    参考文档链接:https://blog.csdn.net/li66934791/article/details/83856225 简介: PL/SQL Developer是一个集成开发环境,专门开发面 ...

  2. git问题待更新

    git pull failed 错误解决 情况: 刚开始的项目,需要创建一个项目,然后pull从远端的项目,创建分支dev,然后从dev分支开始拉取远端的代码 出现错误,说git pull faile ...

  3. 《深入理解 Java 虚拟机》读书笔记:虚拟机类加载机制

    正文 虚拟机把描述类的数据从 Class 文件加载到内存,并对数据进行校验.转换解析和初始化,最终形成可以被虚拟机直接使用的 Java 类型,这就是虚拟机的类加载机制. 一.类加载的时机 1.类的生命 ...

  4. Lambda 语法

    1.java8 Lambda表达式语法简介 (此处需要使用jdk1.8或其以上版本) Lambd表达式分为左右两侧 * 左侧:Lambda 表达式的参数列表 * 右侧:Lambda 表达式中所需要执行 ...

  5. npm install、npm install --save与npm install --save-dev、npm install -g区别

    npm install X: 会把X包安装到node_modules目录中 不会修改package.json 之后运行npm install命令时,不会自动安装X npm install X –sav ...

  6. zabbix图表出现中文乱码

    搭建完成Zabbix监控服务器之后,切换到中文语言,图表展示出现乱码,如图所示 按照网上流传的上传windows下的字体的方法,还是不行,最后发现是PHP编译时的问题: php在编译时开启了-enab ...

  7. Python多线程的事件监控

    设想这样一个场景: 你创建了10个子线程,每个子线程分别爬一个网站,一开始所有子线程都是阻塞等待.一旦某个事件发生:例如有人在网页上点了一个按钮,或者某人在命令行输入了一个命令,10个爬虫同时开始工作 ...

  8. Spark入门(二)--如何用Idea运行我们的Spark项目

    用Idea搭建我们的Spark环境 用IDEA搭建我们的环境有很多好处,其中最大的好处,就是我们甚至可以在工程当中直接运行.调试我们的代码,在控制台输出我们的结果.或者可以逐行跟踪代码,了解spark ...

  9. 深度学习与人类语言处理-语音识别(part2)

    上节回顾深度学习与人类语言处理-语音识别(part1),这节课我们将学习如何将seq2seq模型用在语音识别 LAS 那我们来看看LAS的Encoder,Attend,Decoder分别是什么 Lis ...

  10. 一文了解服务端推送(含JS代码示例)

    常用的服务端推送技术,包括轮询.长轮询.websocket.server-sent-event(SSE) 传统的HTTP请求是由客户端发送一个request,服务端返回对应response,所以当服务 ...