Elasticsearch系列---使用中文分词器
前言
前面的案例使用standard、english分词器,是英文原生的分词器,对中文分词支持不太好。中文作为全球最优美、最复杂的语言,目前中文分词器较多,ik-analyzer、结巴中文分词、THULAC、NLPIR和阿里的aliws都是非常优秀的,我们以ik-analyzer作为讲解的重点,其它分词器可以举一反三。
概要
本篇主要介绍中文分词器ik-analyzer的安装使用、自定义词库以及热更新方案。
分词器插件安装
我们Elasticsearch 6.3.1版本为例,集成IK分词器,其他的分词器过程也类似,在ES的bin目录下执行插件安装命令即可:
./elasticsearch-plugin install https://github.com/medcl/elasticsearch-analysis-ik/releases/download/v6.3.1/elasticsearch-analysis-ik-6.3.1.zip
其中install后面的那个的地址是 elasticsearch-analysis-ik 的github release对应ES版本的下载地址。
插件的版本最好与Elasticsearch版本保持一致,如果Elasticsearch为别的版本,下载对应版本的ik-analyzer插件即可。
安装成功后,ES启动日志就能看到如下信息:
[2019-11-27T12:17:15,255][INFO ][o.e.p.PluginsService] [node-1] loaded plugin [analysis-ik]
IK分词器
基础知识
IK分词器包含两种analyzer,一般用ik_max_word
ik_max_word:会将文本做最细粒度的拆分
ik_smart:会做最粗粒度的拆分
测试分词效果
# ik_max_word分词测试
GET /_analyze
{
"text": "您好祖国",
"analyzer": "ik_smart"
}
# 响应如下:
{
"tokens": [
{
"token": "您好",
"start_offset": 0,
"end_offset": 2,
"type": "CN_WORD",
"position": 0
},
{
"token": "祖国",
"start_offset": 2,
"end_offset": 4,
"type": "CN_WORD",
"position": 1
}
]
}
# ik_max_word分词测试
GET /_analyze
{
"text": "我和我的祖国",
"analyzer": "ik_max_word"
}
# 响应如下:
{
"tokens": [
{
"token": "我",
"start_offset": 0,
"end_offset": 1,
"type": "CN_CHAR",
"position": 0
},
{
"token": "和我",
"start_offset": 1,
"end_offset": 3,
"type": "CN_WORD",
"position": 1
},
{
"token": "的",
"start_offset": 3,
"end_offset": 4,
"type": "CN_CHAR",
"position": 2
},
{
"token": "祖国",
"start_offset": 4,
"end_offset": 6,
"type": "CN_WORD",
"position": 3
}
]
}
配置文件
ik插件安装完成后,可以在elasticsearch-6.3.1/config/analysis-ik
看到ik的配置文件IKAnalyzer.cfg.xml
<?xml version="1.0" encoding="UTF-8"?>
<!DOCTYPE properties SYSTEM "http://java.sun.com/dtd/properties.dtd">
<properties>
<comment>IK Analyzer 扩展配置</comment>
<!--用户可以在这里配置自己的扩展字典 -->
<entry key="ext_dict"></entry>
<!--用户可以在这里配置自己的扩展停止词字典-->
<entry key="ext_stopwords"></entry>
<!--用户可以在这里配置远程扩展字典 -->
<!-- <entry key="remote_ext_dict">words_location</entry> -->
<!--用户可以在这里配置远程扩展停止词字典-->
<!-- <entry key="remote_ext_stopwords">words_location</entry> -->
</properties>
该目录下带有许多文件,含义如下:
- main.dic ik 原生内置的中文词库,里面有275909条现成的词语
- quantifier.dic 量词和单位名称,如个,斤,克,米之类的
- suffix.dic 常见后缀词,如江,村,省,市,局等
- surname.dic 中国姓氏
- stopword.dic 停用词,目前默认的是写的几个英文单词,如and, a, the等
- preposition.dic 副词、语气助词,连接词等无实际含义的词语,如却,也,是,否则之类的
6.3.1版本的IK分词器还提供了额外的词库补充文件,extra开头的那几个就是,如extra_main.dic,共收录398716条现有的词语,默认没有使用,有需要可以在配置文件IKAnalyzer.cfg.xml上添加,其他类似。
最重要的是main.dic和stopword.dic。stopword(停用词),分词时会直接被干掉,不会建立在倒排索引中。
自定义词库
- 创建自定义词库文件mydic.dic,并在IKAnalyzer.cfg.xml的ext_dict属性里加上该文件名,可以在mydic.dic文件里补充自己的词汇,如网络流行词:跪族篮孩。
添加前的分词效果:
GET /forum/_analyze
{
"text": "跪族篮孩",
"analyzer": "ik_max_word"
}
响应结果:
{
"tokens": [
{
"token": "跪",
"start_offset": 0,
"end_offset": 1,
"type": "CN_WORD",
"position": 0
},
{
"token": "族",
"start_offset": 1,
"end_offset": 2,
"type": "CN_CHAR",
"position": 1
},
{
"token": "篮",
"start_offset": 2,
"end_offset": 3,
"type": "CN_WORD",
"position": 2
},
{
"token": "孩",
"start_offset": 3,
"end_offset": 4,
"type": "CN_CHAR",
"position": 3
}
]
}
添加词库后:
{
"tokens": [
{
"token": "跪族篮孩",
"start_offset": 0,
"end_offset": 4,
"type": "CN_WORD",
"position": 0
},
{
"token": "跪",
"start_offset": 0,
"end_offset": 1,
"type": "CN_WORD",
"position": 1
},
{
"token": "族",
"start_offset": 1,
"end_offset": 2,
"type": "CN_CHAR",
"position": 2
},
{
"token": "篮",
"start_offset": 2,
"end_offset": 3,
"type": "CN_WORD",
"position": 3
},
{
"token": "孩",
"start_offset": 3,
"end_offset": 4,
"type": "CN_CHAR",
"position": 4
}
]
}
能看到完整的“跪族篮孩”,能看到完整的语词出现。
2)自己建立停用词库,如了,的,哈,啥,这几个字不想去建立索引
在配置文件IKAnalyzer.cfg.xml下ext_stopwords标签添加:extra_stopword.dic,并加几个词,修改后同样要重启es。
例:加一个"啥"字在ext_stopword中
修改前:
GET /forum/_analyze
{
"text": "啥都好",
"analyzer": "ik_max_word"
}
响应结果:
{
"tokens": [
{
"token": "啥",
"start_offset": 0,
"end_offset": 1,
"type": "CN_WORD",
"position": 0
},
{
"token": "都好",
"start_offset": 1,
"end_offset": 3,
"type": "CN_WORD",
"position": 1
}
]
}
添加停用词后
{
"tokens": [
{
"token": "都好",
"start_offset": 1,
"end_offset": 3,
"type": "CN_WORD",
"position": 0
}
]
}
那个啥字直接没有了,结果符合预期。
热更新方案
上面自定义词库有一个致命问题:必须要重启ES,新增的词库才能生效。
研发、测试环境自己玩玩无所谓,多半是自己使用,节点又少,重启就重启,关系不大。但想想生产环境能随便让你重启吗?动辄几百个ES实例,重启的事就别想了,另外找办法。
由此引出现在的热更新需求,让ES不停机能立即加载新增的词库。
热更新的方案
- 基于id分词器原生支持的更新方案,部署一个web服务器,提供一个http接口,通过modified和try两个http响应头,来提供词语的热更新操作。
- 修改ik分词器源码,然后手动支持从mysql中每隔一定时间,自动加载新的词库。
推荐方案二,方案一虽是官方提供的,但操作起来比较麻烦,还需要部署http服务器。
方案步骤
1)下载源码
git clone https://github.com/medcl/elasticsearch-analysis-ik
git checkout tags/v6.3.1
该工程是Maven项目工程,将代码导入IDEA或Eclipse。
2)修改点
org.wltea.analyzer.dic.Dictionary
主要思路是在这个类的initial()方法内增加一个入口,反复去调用reLoadMainDict()方法,此方法如下:
public void reLoadMainDict() {
logger.info("重新加载词典...");
// 新开一个实例加载词典,减少加载过程对当前词典使用的影响
Dictionary tmpDict = new Dictionary(configuration);
tmpDict.configuration = getSingleton().configuration;
tmpDict.loadMainDict();
tmpDict.loadStopWordDict();
_MainDict = tmpDict._MainDict;
_StopWords = tmpDict._StopWords;
logger.info("重新加载词典完毕...");
}
这个方法就是重新加载词库的,然后修改loadMainDict()和loadStopWordDict()方法,在这两个方法最后加上读取数据库获取最新的数据记录的逻辑即可。数据库的表结构自己定义两张表,满足数据库表设计规范即可。
3)IDE上mvn package打包
可以直接用target/releases/目录下的elasticsearch-analysis-ik-6.3.1.zip
4)解压zip包,加上jdbc的配置,该修改的修改,重启ES,看日志
5)在数据库里加几个字段,在线尝试是否生效。
方案延伸
该方案使用数据库轮询的方法,简单有效,但比较浪费资源,毕竟生产上修改词库的动作是按需求发生的,可以考虑由定时轮询改成MQ消息通知,这样就可以做到按需更新,而不用浪费太多的资源做词典更新。
小结
本篇对中文分词器IK作了简单的讲解,市面上流行的中文分词器很多,如果我们遇到有中文分词的需求,货比三家是永远不过时的道理,调研可能要花费一些时间,但能挑到适合自己项目的分词器,还是划算的。
专注Java高并发、分布式架构,更多技术干货分享与心得,请关注公众号:Java架构社区
可以扫左边二维码添加好友,邀请你加入Java架构社区微信群共同探讨技术
Elasticsearch系列---使用中文分词器的更多相关文章
- elasticsearch使用ik中文分词器
elasticsearch使用ik中文分词器 一.背景 二.安装 ik 分词器 1.从 github 上找到和本次 es 版本匹配上的 分词器 2.使用 es 自带的插件管理 elasticsearc ...
- 如何在Elasticsearch中安装中文分词器(IK)和拼音分词器?
声明:我使用的Elasticsearch的版本是5.4.0,安装分词器前请先安装maven 一:安装maven https://github.com/apache/maven 说明: 安装maven需 ...
- Elasticsearch:hanlp 中文分词器
HanLP 中文分词器是一个开源的分词器,是专为Elasticsearch而设计的.它是基于HanLP,并提供了HanLP中大部分的分词方式.它的源码位于: https://github.com/Ke ...
- Elasticsearch:IK中文分词器
Elasticsearch内置的分词器对中文不友好,只会一个字一个字的分,无法形成词语,比如: POST /_analyze { "text": "我爱北京天安门&quo ...
- 如何在Elasticsearch中安装中文分词器(IK+pinyin)
如果直接使用Elasticsearch的朋友在处理中文内容的搜索时,肯定会遇到很尴尬的问题--中文词语被分成了一个一个的汉字,当用Kibana作图的时候,按照term来分组,结果一个汉字被分成了一组. ...
- elasticsearch之集成中文分词器
IK是基于字典的一款轻量级的中文分词工具包,可以通过elasticsearch的插件机制集成: 一.集成步骤 1.在elasticsearch的安装目录下的plugin下新建ik目录: 2.在gith ...
- ElasticSearch安装中文分词器IKAnalyzer
# ElasticSearch安装中文分词器IKAnalyzer 本篇主要讲解如何在ElasticSearch中安装中文分词器IKAnalyzer,拆分的每个词都是我们熟知的词语,从而建立词汇与文档 ...
- 搜索引擎ElasticSearch系列(五): ElasticSearch2.4.4 IK中文分词器插件安装
一:IK分词器简介 IK Analyzer是一个开源的,基于java语言开发的轻量级的中文分词工具包.从2006年12月推出1.0版开始, IKAnalyzer已经推出了4个大版本.最初,它是以开源 ...
- ElasticSearch搜索引擎安装配置中文分词器IK插件
近几篇ElasticSearch系列: 1.阿里云服务器Linux系统安装配置ElasticSearch搜索引擎 2.Linux系统中ElasticSearch搜索引擎安装配置Head插件 3.Ela ...
随机推荐
- Python不使用元类创建缓存实例
问题 当创建类实例时我们想返回一个缓存引用,让其指向上一个用同样参数(如果有的话)创建出来的类实例. 这个问题常常出现在当我们想确保针对一组输入参数只会有一个类实例存在时. 解决方法: 使用一个与类本 ...
- 测试用例设计经典面试题之电梯、杯子、笔、桌子、洗衣机、椅子、ATM等
测试用例设计经典面试题之电梯.杯子.笔.桌子.洗衣机.椅子.ATM等 1.测试项目:电梯 需求测试:查看电梯使用说明书.安全说明书等 界面测试:查看电梯外观 功能测试:测试电梯能否实现正常的上升和下降 ...
- u-boot的环境变量详解
u-boot的环境变量 u-boot的环境变量是使用u-boot的关键,它可以由你自己定义的,但是其中有一些也是大家经常使用,约定熟成的,有一些是u-boot自己定义的,更改这些名字会出现错 ...
- SetTimeout()多次运行函数后越来越快的问题
问题原因很简单,但是由于代码逻辑问题,一直没有考虑到: 网上有个帖子说的很明白:原帖入口 假如你在0时刻点击了一下按钮,那么500ms时数字会跳一下,1000ms会再跳一下,依次类推,1500,200 ...
- [红日安全]Web安全Day3 - CSRF实战攻防
本文由红日安全成员: Once 编写,如有不当,还望斧正. 大家好,我们是红日安全-Web安全攻防小组.此项目是关于Web安全的系列文章分享,还包含一个HTB靶场供大家练习,我们给这个项目起了一个名字 ...
- LeetCode--链表1-单链表
LeetCode--链表1-单链表 单链表模板 初始化 头部插入 尾部插入 删除节点 Index插入 Index返回对应的节点指针和val值 class MyLinkedList { private: ...
- Ansible-基本概述
为什么要自动化运维 纯手动软件安装部署方式 我们以 10 台机器部署 Nginx 为例.部署步骤如下: 1.通过 ssh 登录一台机器: 2.yum install -y nginx 或者 获取安装包 ...
- yii2设置默认控制器
以Yii2高级模板配置为例
- css的相对定位与绝对定位
css相对定位:是相对于它本身最近的父级定位 css绝对定位:是对于它本身最接近的参照物来定位,如果没有就对于body来定位
- SSM动态切换数据源
有需求就要想办法解决,最近参与的项目其涉及的三个数据表分别在三台不同的服务器上,这就有点突兀了,第一次遇到这种情况,可这难不倒笔者,资料一查,代码一打,回头看看源码,万事大吉 1. 预备知识 这里默认 ...