hdu3665Floyd解法
题目链接:http://icpc.njust.edu.cn/Problem/Hdu/3665/
Floyd是经典的dp算法,将迭代过程分成n个阶段,经过n个阶段的迭代所有点对之间的最短路径都可以求出,时间复杂度是O(n^3)。
代码如下:
#include<bits/stdc++.h>
using namespace std;
typedef unsigned int ui;
typedef long long ll;
typedef unsigned long long ull;
#define pf printf
#define mem(a,b) memset(a,b,sizeof(a))
#define prime1 1e9+7
#define prime2 1e9+9
#define lson l,mid,rt<<1
#define rson mid+1,r,rt<<1|1
#define scand(x) scanf("%llf",&x)
#define f(i,a,b) for(int i=a;i<=b;i++)
#define scan(a) scanf("%d",&a)
#define mp(a,b) make_pair((a),(b))
#define P pair<int,int>
#define dbg(args) cout<<#args<<":"<<args<<endl;
#define inf 0x3f3f3f3f
const int maxn=1e3+;
int n,m,t;
int edge[maxn][maxn],d[maxn][maxn];
int ans=inf;
void init()
{
f(i,,n)
f(j,,n)
{
if(i==j)d[i][j]=;
else d[i][j]=inf;
}
}
void floyd()
{
f(k,,n)
f(i,,n)
f(j,,n)
{
d[i][j]=min(d[i][j],d[i][k]+d[k][j]);
}
}
int main()
{
//freopen("input.txt","r",stdin);
//freopen("output.txt","w",stdout);
std::ios::sync_with_stdio(false);
while(scan(n)!=EOF)
{
init();
int mi,pi;
f(i,,n-)
{
scan(mi);
scan(pi);
if(pi)d[i][n]=;
int u,v;
while(mi--)
{
scan(u);
scan(v);
d[i][u]=v;
}
}
floyd();
pf("%d\n",d[][n]);
}
}
hdu3665Floyd解法的更多相关文章
- alias导致virtualenv异常的分析和解法
title: alias导致virtualenv异常的分析和解法 toc: true comments: true date: 2016-06-27 23:40:56 tags: [OS X, ZSH ...
- Matlab数值计算示例: 牛顿插值法、LU分解法、拉格朗日插值法、牛顿插值法
本文源于一次课题作业,部分自己写的,部分借用了网上的demo 牛顿迭代法(1) x=1:0.01:2; y=x.^3-x.^2+sin(x)-1; plot(x,y,'linewidth',2);gr ...
- 增强学习(三)----- MDP的动态规划解法
上一篇我们已经说到了,增强学习的目的就是求解马尔可夫决策过程(MDP)的最优策略,使其在任意初始状态下,都能获得最大的Vπ值.(本文不考虑非马尔可夫环境和不完全可观测马尔可夫决策过程(POMDP)中的 ...
- Guass列选主元消去法和三角分解法
最近数值计算学了Guass列主消元法和三角分解法解线性方程组,具体原理如下: 1.Guass列选主元消去法对于AX =B 1).消元过程:将(A|B)进行变换为,其中是上三角矩阵.即: k从1到n-1 ...
- Hanoi问题java解法
用什么语言解法都差不多,思路都是一样,递归,这其中只要注重于开始和结果的状态就可以了,对于中间过程,并不需要深究.(我细细思考了一下,还是算了.=_=) 代码其实很简单注重的是思路. 问题描述:有一个 ...
- Euler-Maruyama discretization("欧拉-丸山"数值解法)
欧拉法的来源 在数学和计算机科学中,欧拉方法(Euler method)命名自它的发明者莱昂哈德·欧拉,是一种一阶数值方法,用以对给定初值的常微分方程(即初值问题)求解.它是一种解决常微分方程数值积分 ...
- 小明的密码-初级DP解法
#include #include #include using namespace std; int visited[5][20][9009];// 访问情况 int dp[5][20][9009] ...
- 最长下降子序列O(n^2)及O(n*log(n))解法
求最长下降子序列和LIS基本思路是完全一样的,都是很经典的DP题目. 问题大都类似于 有一个序列 a1,a2,a3...ak..an,求其最长下降子序列(或者求其最长不下降子序列)的长度. 以最长下降 ...
- [Architecture] 系统架构正交分解法
[Architecture] 系统架构正交分解法 前言 随着企业成长,支持企业业务的软件,也会越来越庞大与复杂.当系统复杂到一定程度,开发人员会发现很多系统架构的设计细节,很难有条理.有组织的用一张大 ...
随机推荐
- 一个自动递增生成目录和文件的cop文件类
package com.hudong.util.orther; import java.io.File; import java.io.FileInputStream; import java.io. ...
- 爬虫入门(四):urllib2
主要使用python自带的urllib2进行爬虫实验. 写在前面的蠢事:本来新建了一个urllib2.py便于好认识这是urllib2的实验,结果始终编译不通过,错误错误.不能用Python的关键字( ...
- Android编程权威指南(第2版)--第16章 使用intent拍照 挑战练习
16.7挑战练习:优化照片显示 新建dialog_photo.xml 1234567891011121314 <?xml version="1.0" encoding=&qu ...
- Spring Boot从入门到精通(五)多数据源配置实现及源码分析
多数据源配置在项目软件中是比较常见的开发需求,Spring和Spring Boot中对此都有相应的解决方案可供大家参考.在Spring Boot中,如MyBatis.JdbcTemplate以及Jpa ...
- GIT 使用(二):创建仓库并提交代码
基本操作 所用命令使用 windows 下安装 git-bash 运行 Table of Contents 先决条件 已经安装了 GIT 客户端 已经设置用户信息 如果没做可以看安装和配置 获取 Gi ...
- C++走向远洋——59(项目三、图形面积、抽象类)
*/ * Copyright (c) 2016,烟台大学计算机与控制工程学院 * All rights reserved. * 文件名:text.cpp * 作者:常轩 * 微信公众号:Worldhe ...
- C++走向远洋——58(项目二3、动物这样叫、改进版)
*/ * Copyright (c) 2016,烟台大学计算机与控制工程学院 * All rights reserved. * 文件名:text.cpp * 作者:常轩 * 微信公众号:Worldhe ...
- Java2变量和运算符
课后作业:[必做题] 1√AB互换 已知a,b均是整型变量,写出将a,b两个变量中的值互换的程序.(知识点:变量和运算符综合应用) [必做题] package com.two; public clas ...
- pip3 install mysqlclient安装失败
报错信息: OSError: mysql_config not found 解决方法: 执行以下命令 yum install python-devel mysql-devel -y 然后再 pip3 ...
- 前端模板引擎doT.js的使用
前言 我们在做前端开发时,经常需要根据后台返回的json数据动态生成html并插入到页面中显示.最简单的方法就是通过jQuery去遍历数据拼接html,如以下: <script> var ...