\(首先很容易想到一个O(n^4m)的DP\)

\(设dp\ [i]\ [j]\ [q]\ 为长度i,a数组以j结尾,b数组以q结尾(q>=j)\)

        for(int i=1;i<=n;i++)
for(int j=i;j<=n;j++)
dp[1][i][j]=1;//初始化长度为1的时候
for(int i=2;i<=m;i++)
for(int j=1;j<=n;j++)
for(int q=j;q<=n;q++)
for(int w=1;w<=j;w++)//升序
for(int e=q;e<=n;e++)//降序
dp[i][j][q]=(dp[i-1][w][e]+dp[i][j][q])%mod;

\(然而复杂度炸上了天,那就要另辟蹊径。\)

\(\color{Red}{一、合并两个数组DP以降低复杂度}\)

\(上面DP的慢,是因为每次都要枚举a和b数组最后一个数\)

\(但是b数组逆序接在a数组,可以发现就是一个不降序数组,就是求长度2*m的不降序数组个数。\)

#include <bits/stdc++.h>
using namespace std;
typedef long long ll;
const ll mod=1e9+7;
ll n,m,ans;
ll dp[21][1001];
int main()
{
cin>>n>>m;
for(int i=1;i<=n;i++) dp[1][i]=1;
for(int i=2;i<=2*m;i++)
for(int j=1;j<=n;j++)
{
for(int q=1;q<=j;q++)
dp[i][j]=(dp[i][j]+dp[i-1][q])%mod;
if(i==2*m) ans=(ans+dp[i][j])%mod;
}
cout<<ans;
}

\(\color{Purple}{Ⅱ.还有组合数学的解法。[当然不是我想的┭┮﹏┭┮]}\)

\(仍然要注意到b的最小元素(尾元素)不小于a的最大元素(尾元素)\)

\(因为a不下降,b不上升,那么给定2m个数,有且仅有1种方案组成符合条件的a,b数组\)

\(也就是说,从1-n选2m个数,可以选重复的,问有多少种选法??\)

\(也就是说,把2m个小球投到1-n个盒子,盒子可以为空,有多少种投法。\)

\(为了方便,先把n个盒子都放一个苹果,也就是2*m+n放在n个盒子,每个盒子至少放一个\)

\(这样就可以用隔板法。2*m+n-1个间隙,从中选出n-1个间隙放隔板,就分成了n份。\)

\(答案是C_{2*m+n-1}^{n-1}\)

#include <bits/stdc++.h>
using namespace std;
typedef long long ll;
const ll mod=1e9+7;
ll n,m,ans;
ll fac[2001];
ll qpow(ll a,ll n){
ll ans=1;
while(n){
if(n&1) ans=ans*a%mod;
a=a*a%mod;
n>>=1;
}
return ans;
}
ll C(ll n,ll m)
{
if(m>n) return 0;
return fac[n]*qpow(fac[m],mod-2)%mod*qpow(fac[n-m],mod-2)%mod;
}
ll Lucas(ll n,ll m)
{
if(!m) return 1;
return C(n%mod,m%mod)*Lucas(n/mod,m/mod)%mod;
}
int main()
{
cin>>n>>m;
fac[0]=1;
for(ll i=1;i<=2000;i++) fac[i]=(fac[i-1]*i)%mod;
cout<<Lucas(2*m+n-1,n-1);
}

C. Two Arrays(思维DP或组合数学)的更多相关文章

  1. Atcoder Grand Contest 037B(DP,组合数学,思维)

    #include<bits/stdc++.h>using namespace std;const long long mod = 998244353;string s;int a[3000 ...

  2. codeforces 1288C. Two Arrays(dp)

    链接:https://codeforces.com/contest/1288/problem/C C. Two Arrays 题意:给定一个数n和一个数m,让构建两个数组a和b满足条件,1.数组中所有 ...

  3. D - Yet Another Problem On a Subsequence CodeForces - 1000D (DP,组合数学)

    D - Yet Another Problem On a Subsequence CodeForces - 1000D The sequence of integers a1,a2,-,aka1,a2 ...

  4. T2960 全民健身【思维Dp,预处理,差分优化】

    Online Judge:YCJSOI Label:Dp,思维题,预处理,滚动优化 题目描述 乐乐现在掌管一个大公司,办公楼共有n层.为了增加员工的身体素质,他决定在每层楼都建立一个活动室,活动室分乒 ...

  5. CF1288C-Two Arrays (DP)

    You are given two integers n and m. Calculate the number of pairs of arrays (a,b) such that: the len ...

  6. hdu 4661 Message Passing(木DP&amp;组合数学)

    Message Passing Time Limit: 10000/5000 MS (Java/Others)    Memory Limit: 131072/131072 K (Java/Other ...

  7. 【做题】CSA49F - Card Collecting Game——思维&dp

    原文链接 https://www.cnblogs.com/cly-none/p/CSA49F.html 题意:Alice和Bob在玩游戏.有\(n\)种卡牌,每种卡牌有\(b_i\)张,保证\(\su ...

  8. 牛客练习赛40 A 小D的剧场 (思维dp)

    链接:https://ac.nowcoder.com/acm/contest/369/A 题目描述 若你摘得小的星星 你将得到小的幸福  若你摘得大的星星 你将得到大的财富  若两者都能摘得 你将得到 ...

  9. Codeforces Round #533 (Div. 2) C.思维dp D. 多源BFS

    题目链接:https://codeforces.com/contest/1105 C. Ayoub and Lost Array 题目大意:一个长度为n的数组,数组的元素都在[L,R]之间,并且数组全 ...

随机推荐

  1. 【python实现卷积神经网络】开始训练

    代码来源:https://github.com/eriklindernoren/ML-From-Scratch 卷积神经网络中卷积层Conv2D(带stride.padding)的具体实现:https ...

  2. Volatile不保证原子性(二)

    Volatile不保证原子性 前言 通过前面对JMM的介绍,我们知道,各个线程对主内存中共享变量的操作都是各个线程各自拷贝到自己的工作内存进行操作后在写回到主内存中的. 这就可能存在一个线程AAA修改 ...

  3. 【Java】Array 数组

    概述 数组是多个相同数据类型按一定顺序排列的一组数据 特点: - 数据类型相同!! - 长度固定!! 构成数组的几个要素 - 数组名称 - 下标,又称索引 - 元素 - 数组长度 数组是一种引用类型, ...

  4. DLL/OCX文件的注册与数据执行保护DEP

    注册/反注册dll或ocx文件时,无论是用regsvr32还是DllRegisterServer/DllUnregisterServer,可能会遇到[内存位置访问无效]的问题: 此时把操作系统的数据执 ...

  5. DOS事件

    1 onblur 失去焦点 2 onchange   改变 3 onkeyup      按键弹起 4 onmouse over 鼠标移上去 5 onmouse leave   鼠标离开 6 onmo ...

  6. Aria2任意文件写入漏洞

    目录: 简介 漏洞描述 payload 漏洞复现 一.Aria2介绍 Aria2是一个命令行下运行,多协议,多来源下载工具(HTTP / HTTPS,FTP,BitTorrent,Metalink), ...

  7. ajax轮询思路

    以我个人理解 ,ajax短轮询就是用定时器,定时请求数据库,然后把有用的数据做处理 ajax长轮询恩 就是在 ajax回调函数,继续调用ajax请求

  8. 4.K均值算法应用

    一.课堂练习 from sklearn.cluster import KMeans import matplotlib.pyplot as plt import numpy as np from sk ...

  9. 学习笔记-CTF密码相关

    RSA共模攻击 RSA基本原理 ①  选择两个大的质数p和q,N=pq: ②  根据欧拉函数,求得r=(p-1)(q-1): ③  选一个小于r的整数e,求得e关于模r的模反元素d: ④  将p和q的 ...

  10. 新版gitbook导出pdf

    文章目录 gitbook自带的npm模块gitbook 使用vscode的插件Markdown PDF 使用CommandBox GitBook Exporter 最近想把自己写的一个gitbook转 ...