【Hadoop离线基础总结】MapReduce 社交粉丝数据分析 求出哪些人两两之间有共同好友,及他俩的共同好友都有谁?
MapReduce 社交粉丝数据分析
求出哪些人两两之间有共同好友,及他俩的共同好友都有谁?
- 用户及好友数据
A:B,C,D,F,E,O
B:A,C,E,K
C:F,A,D,I
D:A,E,F,L
E:B,C,D,M,L
F:A,B,C,D,E,O,M
G:A,C,D,E,F
H:A,C,D,E,O
I:A,O
J:B,O
K:A,C,D
L:D,E,F
M:E,F,G
O:A,H,I,J
- java代码
需要两步完成需求
首先先创建第一步的package
在package中定义main、Mapper、Reducer三个类
定义一个Mapper类
package cn.itcast.demo1.step1;
import org.apache.hadoop.io.LongWritable;
import org.apache.hadoop.io.Text;
import org.apache.hadoop.mapreduce.Mapper;
import java.io.IOException;
public class Step1Mapper extends Mapper<LongWritable, Text, Text, Text> {
@Override
protected void map(LongWritable key, Text value, Context context) throws IOException, InterruptedException {
//输入数据如下格式 A:B,C,D,E,O
//将用户和好友列表分开
String[] split = value.toString().split(":");
//将好友列表分开,放到一个数组中去
String[] friendList = split[1].split(",");
//循环遍历,输出的k2,v2格式为 B [A,E]
for (String friend : friendList) {
context.write(new Text(friend), new Text(split[0]));
}
}
}
定义一个Reducer类
package cn.itcast.demo1.step1;
import org.apache.hadoop.io.Text;
import org.apache.hadoop.mapreduce.Reducer;
import java.io.IOException;
public class Step1Reducer extends Reducer<Text,Text,Text,Text> {
/*
reduce接收到数据是 B [A,E]
B是好友,集合里面装的是多个用户
将数据最终转换成这样的形式进行输出 A-B-E-F-G-H-K- C
*/
@Override
protected void reduce(Text key, Iterable<Text> values, Context context) throws IOException, InterruptedException {
//创建StringBuffer对象
StringBuffer sb = new StringBuffer();
//循环遍历得到v2并拼接成字符串
for (Text value : values) {
sb.append(value.toString()).append("-");
}
context.write(new Text(sb.toString()),key);
}
}
程序main函数入口
package cn.itcast.demo1.step1;
import org.apache.hadoop.conf.Configuration;
import org.apache.hadoop.conf.Configured;
import org.apache.hadoop.fs.Path;
import org.apache.hadoop.io.Text;
import org.apache.hadoop.mapreduce.Job;
import org.apache.hadoop.mapreduce.lib.input.TextInputFormat;
import org.apache.hadoop.mapreduce.lib.output.TextOutputFormat;
import org.apache.hadoop.util.Tool;
import org.apache.hadoop.util.ToolRunner;
public class Step1Main extends Configured implements Tool {
@Override
public int run(String[] args) throws Exception {
//创建job对象
Job job = Job.getInstance(super.getConf(), "step1");
//输入数据,设置输入路径
job.setInputFormatClass(TextInputFormat.class);
TextInputFormat.setInputPaths(job, new Path("file:////Volumes/赵壮备份/大数据离线课程资料/5.大数据离线第五天/共同好友/input/friends.txt"));
//自定义map逻辑
job.setMapperClass(Step1Mapper.class);
//设置k2,v2输出类型
job.setMapOutputKeyClass(Text.class);
job.setMapOutputValueClass(Text.class);
//自定义reduce逻辑
job.setReducerClass(Step1Reducer.class);
//设置k3,v3输出类型
job.setOutputKeyClass(Text.class);
job.setOutputValueClass(Text.class);
//输出数据,设置输出路径
job.setOutputFormatClass(TextOutputFormat.class);
TextOutputFormat.setOutputPath(job, new Path("file:////Volumes/赵壮备份/大数据离线课程资料/5.大数据离线第五天/共同好友/step1_output"));
//将任务提交至集群
boolean b = job.waitForCompletion(true);
return b ? 0 : 1;
}
public static void main(String[] args) throws Exception {
int run = ToolRunner.run(new Configuration(), new Step1Main(), args);
System.exit(run);
}
}
运行完成后,得到第一步的数据
F-D-O-I-H-B-K-G-C- A
E-A-J-F- B
K-A-B-E-F-G-H- C
G-K-C-A-E-L-F-H- D
G-F-M-B-H-A-L-D- E
M-D-L-A-C-G- F
M- G
O- H
C-O- I
O- J
B- K
E-D- L
F-E- M
J-I-H-A-F- O
创建第二步的package
在package中定义main、Mapper、Reducer三个类
定义一个Mapper类
package cn.itcast.demo1.step2;
import org.apache.hadoop.io.LongWritable;
import org.apache.hadoop.io.Text;
import org.apache.hadoop.mapreduce.Mapper;
import java.io.IOException;
import java.util.Arrays;
public class Step2Mapper extends Mapper<LongWritable, Text, Text, Text> {
@Override
protected void map(LongWritable key, Text value, Context context) throws IOException, InterruptedException {
//对拿到的数据进行分割,得到用户列表和好友
String[] split = value.toString().split("\t");
//再对用户列表进行分割,得到用户列表数组
String[] userList = split[0].split("-");
//因为文件中的数据并不是按照字典顺序进行排序,所以有可能会出来A-E E-A的情况,reduceTask是无法将这种情况视为key相同的
//所以需要进行排序
Arrays.sort(userList);
for (int i = 0; i < userList.length - 1; i++) {
for (int j = i + 1; j < userList.length; j++) {
String userTwo = userList[i] + "-" + userList[j];
context.write(new Text(userTwo), new Text(split[1]));
}
}
}
}
定义一个reducer类
package cn.itcast.demo1.step2;
import org.apache.hadoop.io.Text;
import org.apache.hadoop.mapreduce.Reducer;
import java.io.IOException;
public class Step2Reducer extends Reducer<Text, Text, Text, Text> {
@Override
protected void reduce(Text key, Iterable<Text> values, Context context) throws IOException, InterruptedException {
//创建StringBuffer对象
StringBuffer sb = new StringBuffer();
for (Text value : values) {
//获取共同好友列表
sb.append(value.toString()).append("-");
}
context.write(key, new Text(sb.toString()));
}
}
程序main函数入口
package cn.itcast.demo1.step2;
import org.apache.hadoop.conf.Configuration;
import org.apache.hadoop.conf.Configured;
import org.apache.hadoop.fs.Path;
import org.apache.hadoop.io.Text;
import org.apache.hadoop.mapreduce.Job;
import org.apache.hadoop.mapreduce.lib.input.TextInputFormat;
import org.apache.hadoop.mapreduce.lib.output.TextOutputFormat;
import org.apache.hadoop.util.Tool;
import org.apache.hadoop.util.ToolRunner;
public class Step2Main extends Configured implements Tool {
@Override
public int run(String[] args) throws Exception {
//创建job对象
Job job = Job.getInstance(super.getConf(), "step2");
//输入数据,设置输入路径
job.setInputFormatClass(TextInputFormat.class);
TextInputFormat.setInputPaths(job, new Path("file:////Volumes/赵壮备份/大数据离线课程资料/5.大数据离线第五天/共同好友/step1_output"));
//自定义map逻辑
job.setMapperClass(Step2Mapper.class);
//设置k2,v2输出类型
job.setMapOutputKeyClass(Text.class);
job.setMapOutputValueClass(Text.class);
//自定义reduce逻辑
job.setReducerClass(Step2Reducer.class);
//设置k3,v3输出类型
job.setOutputKeyClass(Text.class);
job.setOutputValueClass(Text.class);
//输出数据,设置输出路径
job.setOutputFormatClass(TextOutputFormat.class);
TextOutputFormat.setOutputPath(job, new Path("file:////Volumes/赵壮备份/大数据离线课程资料/5.大数据离线第五天/共同好友/step2_output"));
//提交任务至集群
boolean b = job.waitForCompletion(true);
return b ? 0 : 1;
}
public static void main(String[] args) throws Exception {
int run = ToolRunner.run(new Configuration(), new Step2Main(), args);
System.exit(run);
}
}
运行结果为
A-B C-E-
A-C D-F-
A-D F-E-
A-E C-B-D-
A-F D-O-E-B-C-
A-G C-D-F-E-
A-H E-C-O-D-
A-I O-
A-J O-B-
A-K C-D-
A-L E-D-F-
A-M F-E-
B-C A-
B-D E-A-
B-E C-
B-F E-A-C-
B-G A-E-C-
B-H E-C-A-
B-I A-
B-K A-C-
B-L E-
B-M E-
B-O A-
C-D F-A-
C-E D-
C-F A-D-
C-G F-D-A-
C-H D-A-
C-I A-
C-K A-D-
C-L D-F-
C-M F-
C-O I-A-
D-E L-
D-F A-E-
D-G F-A-E-
D-H A-E-
D-I A-
D-K A-
D-L F-E-
D-M F-E-
D-O A-
E-F M-C-B-D-
E-G C-D-
E-H C-D-
E-J B-
E-K C-D-
E-L D-
F-G A-D-E-C-
F-H D-O-C-E-A-
F-I O-A-
F-J B-O-
F-K A-D-C-
F-L D-E-
F-M E-
F-O A-
G-H E-A-C-D-
G-I A-
G-K C-D-A-
G-L D-E-F-
G-M E-F-
G-O A-
H-I O-A-
H-J O-
H-K D-A-C-
H-L E-D-
H-M E-
H-O A-
I-J O-
I-K A-
I-O A-
K-L D-
K-O A-
L-M F-E-
【Hadoop离线基础总结】MapReduce 社交粉丝数据分析 求出哪些人两两之间有共同好友,及他俩的共同好友都有谁?的更多相关文章
- 【Hadoop离线基础总结】impala简单介绍及安装部署
目录 impala的简单介绍 概述 优点 缺点 impala和Hive的关系 impala如何和CDH一起工作 impala的架构及查询计划 impala/hive/spark 对比 impala的安 ...
- 【Hadoop离线基础总结】oozie的安装部署与使用
目录 简单介绍 概述 架构 安装部署 1.修改core-site.xml 2.上传oozie的安装包并解压 3.解压hadooplibs到与oozie平行的目录 4.创建libext目录,并拷贝依赖包 ...
- 【Hadoop离线基础总结】Hue的简单介绍和安装部署
目录 Hue的简单介绍 概述 核心功能 安装部署 下载Hue的压缩包并上传到linux解压 编译安装启动 启动Hue进程 hue与其他框架的集成 Hue与Hadoop集成 Hue与Hive集成 Hue ...
- 【Hadoop离线基础总结】流量日志分析网站整体架构模块开发
目录 数据仓库设计 维度建模概述 维度建模的三种模式 本项目中数据仓库的设计 ETL开发 创建ODS层数据表 导入ODS层数据 生成ODS层明细宽表 统计分析开发 流量分析 受访分析 访客visit分 ...
- 【Hadoop离线基础总结】Hive调优手段
Hive调优手段 最常用的调优手段 Fetch抓取 MapJoin 分区裁剪 列裁剪 控制map个数以及reduce个数 JVM重用 数据压缩 Fetch的抓取 出现原因 Hive中对某些情况的查询不 ...
- 【Hadoop离线基础总结】Sqoop常用命令及参数
目录 常用命令 常用公用参数 公用参数:数据库连接 公用参数:import 公用参数:export 公用参数:hive 常用命令&参数 从关系表导入--import 导出到关系表--expor ...
- 【Hadoop离线基础总结】MapReduce案例之自定义groupingComparator
MapReduce案例之自定义groupingComparator 求取Top 1的数据 需求 求出每一个订单中成交金额最大的一笔交易 订单id 商品id 成交金额 Order_0000005 Pdt ...
- 【Hadoop离线基础总结】工作流调度器azkaban
目录 Azkaban概述 工作流调度系统的作用 工作流调度系统的实现 常见工作流调度工具对比 Azkaban简单介绍 安装部署 Azkaban的编译 azkaban单服务模式安装与使用 azkaban ...
- 【Hadoop离线基础总结】数据仓库和hive的基本概念
数据仓库和Hive的基本概念 数据仓库 概述 数据仓库英文全称为 Data Warehouse,一般简称为DW.主要目的是构建面向分析的集成化数据环境,主要职责是对仓库中的数据进行分析,支持我们做决策 ...
随机推荐
- sublime查看项目代码多少行
---------------------sublime 0.右击要查找的文件; 1.勾选正则( .* ); 3.输入正则表达式 ^[ \t]*[^ \t\n\r]+.*$ 0:搜索 \n 是不是 ...
- shiro:加密及密码比对器(三)
基于[自定义remle(二)]项目增加加密功能 1:数据库t_user表增加一列(盐) 增加字段:salt CREATE TABLE `t_user` ( `id` int(11) NOT NULL ...
- 解决IE升级后必须以管理员运行的问题
很多网友可能都遇到过这样的问题,在ie升级后,无法打开,必须以管理员身份运行.今天我也遇到了这个问题.最终找到了解决办法. 1.Win + R 2.输入 regedit,定位到 HKEY_CURREN ...
- 数值计算方法实验之Newton 多项式插值(MATLAB代码)
一.实验目的 在己知f(x),x∈[a,b]的表达式,但函数值不便计算或不知f(x),x∈[a,b]而又需要给出其在[a,b]上的值时,按插值原则f(xi)=yi (i=0,1,……, n)求出简单函 ...
- Unity 芯片拼图算法
很多游戏的养成系统中会有利用芯片或者碎片来合成特定道具的功能,或者来给玩家以额外的属性提升等,先截个图以便更好说明: 如上图,我们有各种各样形状迥异的碎片,上面只不过列举了其中一部分,现在,我们需要利 ...
- System.Timers.Timer
前言 System.Timers.Timer组件是基于服务器的计时器,它能够指定在应用程序中引发Elapsed事件周期性间隔,以处理相应事件. 使用示例: 运行结果展示: System.Timers. ...
- LeetCode 面试题56 - I. 数组中数字出现的次数 | Python
面试题56 - I. 数组中数字出现的次数 题目 一个整型数组 nums 里除两个数字之外,其他数字都出现了两次.请写程序找出这两个只出现一次的数字.要求时间复杂度是O(n),空间复杂度是O(1). ...
- 如何高效使用vim
Vim 是一款文本编辑器,被称为编辑器之神,非常适合在shell 中编辑代码,熟练的使用Vim,可以让你高效的编写代码. Vim 是Vi 的增强版,所有的类Unix 系统,都自带这两个工具,这两个工具 ...
- ElasticSearch 镜像 & 安装 & 简易集群
目录 ES镜像 JDK镜像 安装 1. 安装JDK 2. 解压安装ES 3. 配置 4. 新建用户 5. 启动 踩坑 1. root启用报错 2. max file descriptors [4096 ...
- mysql 之 清空表中数据
清空表的时候注意外键约束 命令版 查询数据库中所有表名select table_name from information_schema.tables where table_schema='DB_n ...