MapReduce 社交粉丝数据分析


求出哪些人两两之间有共同好友,及他俩的共同好友都有谁?

  • 用户及好友数据
A:B,C,D,F,E,O
B:A,C,E,K
C:F,A,D,I
D:A,E,F,L
E:B,C,D,M,L
F:A,B,C,D,E,O,M
G:A,C,D,E,F
H:A,C,D,E,O
I:A,O
J:B,O
K:A,C,D
L:D,E,F
M:E,F,G
O:A,H,I,J
  • java代码

需要两步完成需求

首先先创建第一步的package

在package中定义main、Mapper、Reducer三个类

定义一个Mapper类

package cn.itcast.demo1.step1;

import org.apache.hadoop.io.LongWritable;
import org.apache.hadoop.io.Text;
import org.apache.hadoop.mapreduce.Mapper; import java.io.IOException; public class Step1Mapper extends Mapper<LongWritable, Text, Text, Text> {
@Override
protected void map(LongWritable key, Text value, Context context) throws IOException, InterruptedException {
//输入数据如下格式 A:B,C,D,E,O
//将用户和好友列表分开
String[] split = value.toString().split(":");
//将好友列表分开,放到一个数组中去
String[] friendList = split[1].split(",");
//循环遍历,输出的k2,v2格式为 B [A,E]
for (String friend : friendList) {
context.write(new Text(friend), new Text(split[0]));
}
}
}

定义一个Reducer类

package cn.itcast.demo1.step1;

import org.apache.hadoop.io.Text;
import org.apache.hadoop.mapreduce.Reducer; import java.io.IOException; public class Step1Reducer extends Reducer<Text,Text,Text,Text> {
/*
reduce接收到数据是 B [A,E]
B是好友,集合里面装的是多个用户
将数据最终转换成这样的形式进行输出 A-B-E-F-G-H-K- C
*/
@Override
protected void reduce(Text key, Iterable<Text> values, Context context) throws IOException, InterruptedException {
//创建StringBuffer对象
StringBuffer sb = new StringBuffer();
//循环遍历得到v2并拼接成字符串
for (Text value : values) {
sb.append(value.toString()).append("-");
}
context.write(new Text(sb.toString()),key);
}
}

程序main函数入口

package cn.itcast.demo1.step1;

import org.apache.hadoop.conf.Configuration;
import org.apache.hadoop.conf.Configured;
import org.apache.hadoop.fs.Path;
import org.apache.hadoop.io.Text;
import org.apache.hadoop.mapreduce.Job;
import org.apache.hadoop.mapreduce.lib.input.TextInputFormat;
import org.apache.hadoop.mapreduce.lib.output.TextOutputFormat;
import org.apache.hadoop.util.Tool;
import org.apache.hadoop.util.ToolRunner; public class Step1Main extends Configured implements Tool {
@Override
public int run(String[] args) throws Exception {
//创建job对象
Job job = Job.getInstance(super.getConf(), "step1");
//输入数据,设置输入路径
job.setInputFormatClass(TextInputFormat.class);
TextInputFormat.setInputPaths(job, new Path("file:////Volumes/赵壮备份/大数据离线课程资料/5.大数据离线第五天/共同好友/input/friends.txt")); //自定义map逻辑
job.setMapperClass(Step1Mapper.class);
//设置k2,v2输出类型
job.setMapOutputKeyClass(Text.class);
job.setMapOutputValueClass(Text.class); //自定义reduce逻辑
job.setReducerClass(Step1Reducer.class);
//设置k3,v3输出类型
job.setOutputKeyClass(Text.class);
job.setOutputValueClass(Text.class); //输出数据,设置输出路径
job.setOutputFormatClass(TextOutputFormat.class);
TextOutputFormat.setOutputPath(job, new Path("file:////Volumes/赵壮备份/大数据离线课程资料/5.大数据离线第五天/共同好友/step1_output")); //将任务提交至集群
boolean b = job.waitForCompletion(true);
return b ? 0 : 1;
} public static void main(String[] args) throws Exception {
int run = ToolRunner.run(new Configuration(), new Step1Main(), args);
System.exit(run);
}
}

运行完成后,得到第一步的数据

F-D-O-I-H-B-K-G-C-	A
E-A-J-F- B
K-A-B-E-F-G-H- C
G-K-C-A-E-L-F-H- D
G-F-M-B-H-A-L-D- E
M-D-L-A-C-G- F
M- G
O- H
C-O- I
O- J
B- K
E-D- L
F-E- M
J-I-H-A-F- O

创建第二步的package

在package中定义main、Mapper、Reducer三个类

定义一个Mapper类

package cn.itcast.demo1.step2;

import org.apache.hadoop.io.LongWritable;
import org.apache.hadoop.io.Text;
import org.apache.hadoop.mapreduce.Mapper; import java.io.IOException;
import java.util.Arrays; public class Step2Mapper extends Mapper<LongWritable, Text, Text, Text> {
@Override
protected void map(LongWritable key, Text value, Context context) throws IOException, InterruptedException {
//对拿到的数据进行分割,得到用户列表和好友
String[] split = value.toString().split("\t");
//再对用户列表进行分割,得到用户列表数组
String[] userList = split[0].split("-");
//因为文件中的数据并不是按照字典顺序进行排序,所以有可能会出来A-E E-A的情况,reduceTask是无法将这种情况视为key相同的
//所以需要进行排序
Arrays.sort(userList);
for (int i = 0; i < userList.length - 1; i++) {
for (int j = i + 1; j < userList.length; j++) {
String userTwo = userList[i] + "-" + userList[j];
context.write(new Text(userTwo), new Text(split[1]));
}
}
}
}

定义一个reducer类

package cn.itcast.demo1.step2;

import org.apache.hadoop.io.Text;
import org.apache.hadoop.mapreduce.Reducer; import java.io.IOException; public class Step2Reducer extends Reducer<Text, Text, Text, Text> {
@Override
protected void reduce(Text key, Iterable<Text> values, Context context) throws IOException, InterruptedException {
//创建StringBuffer对象
StringBuffer sb = new StringBuffer();
for (Text value : values) {
//获取共同好友列表
sb.append(value.toString()).append("-");
}
context.write(key, new Text(sb.toString()));
}
}

程序main函数入口

package cn.itcast.demo1.step2;

import org.apache.hadoop.conf.Configuration;
import org.apache.hadoop.conf.Configured;
import org.apache.hadoop.fs.Path;
import org.apache.hadoop.io.Text;
import org.apache.hadoop.mapreduce.Job;
import org.apache.hadoop.mapreduce.lib.input.TextInputFormat;
import org.apache.hadoop.mapreduce.lib.output.TextOutputFormat;
import org.apache.hadoop.util.Tool;
import org.apache.hadoop.util.ToolRunner; public class Step2Main extends Configured implements Tool {
@Override
public int run(String[] args) throws Exception {
//创建job对象
Job job = Job.getInstance(super.getConf(), "step2");
//输入数据,设置输入路径
job.setInputFormatClass(TextInputFormat.class);
TextInputFormat.setInputPaths(job, new Path("file:////Volumes/赵壮备份/大数据离线课程资料/5.大数据离线第五天/共同好友/step1_output")); //自定义map逻辑
job.setMapperClass(Step2Mapper.class);
//设置k2,v2输出类型
job.setMapOutputKeyClass(Text.class);
job.setMapOutputValueClass(Text.class); //自定义reduce逻辑
job.setReducerClass(Step2Reducer.class);
//设置k3,v3输出类型
job.setOutputKeyClass(Text.class);
job.setOutputValueClass(Text.class); //输出数据,设置输出路径
job.setOutputFormatClass(TextOutputFormat.class);
TextOutputFormat.setOutputPath(job, new Path("file:////Volumes/赵壮备份/大数据离线课程资料/5.大数据离线第五天/共同好友/step2_output")); //提交任务至集群
boolean b = job.waitForCompletion(true);
return b ? 0 : 1;
} public static void main(String[] args) throws Exception {
int run = ToolRunner.run(new Configuration(), new Step2Main(), args);
System.exit(run);
}
}

运行结果为

A-B	C-E-
A-C D-F-
A-D F-E-
A-E C-B-D-
A-F D-O-E-B-C-
A-G C-D-F-E-
A-H E-C-O-D-
A-I O-
A-J O-B-
A-K C-D-
A-L E-D-F-
A-M F-E-
B-C A-
B-D E-A-
B-E C-
B-F E-A-C-
B-G A-E-C-
B-H E-C-A-
B-I A-
B-K A-C-
B-L E-
B-M E-
B-O A-
C-D F-A-
C-E D-
C-F A-D-
C-G F-D-A-
C-H D-A-
C-I A-
C-K A-D-
C-L D-F-
C-M F-
C-O I-A-
D-E L-
D-F A-E-
D-G F-A-E-
D-H A-E-
D-I A-
D-K A-
D-L F-E-
D-M F-E-
D-O A-
E-F M-C-B-D-
E-G C-D-
E-H C-D-
E-J B-
E-K C-D-
E-L D-
F-G A-D-E-C-
F-H D-O-C-E-A-
F-I O-A-
F-J B-O-
F-K A-D-C-
F-L D-E-
F-M E-
F-O A-
G-H E-A-C-D-
G-I A-
G-K C-D-A-
G-L D-E-F-
G-M E-F-
G-O A-
H-I O-A-
H-J O-
H-K D-A-C-
H-L E-D-
H-M E-
H-O A-
I-J O-
I-K A-
I-O A-
K-L D-
K-O A-
L-M F-E-

【Hadoop离线基础总结】MapReduce 社交粉丝数据分析 求出哪些人两两之间有共同好友,及他俩的共同好友都有谁?的更多相关文章

  1. 【Hadoop离线基础总结】impala简单介绍及安装部署

    目录 impala的简单介绍 概述 优点 缺点 impala和Hive的关系 impala如何和CDH一起工作 impala的架构及查询计划 impala/hive/spark 对比 impala的安 ...

  2. 【Hadoop离线基础总结】oozie的安装部署与使用

    目录 简单介绍 概述 架构 安装部署 1.修改core-site.xml 2.上传oozie的安装包并解压 3.解压hadooplibs到与oozie平行的目录 4.创建libext目录,并拷贝依赖包 ...

  3. 【Hadoop离线基础总结】Hue的简单介绍和安装部署

    目录 Hue的简单介绍 概述 核心功能 安装部署 下载Hue的压缩包并上传到linux解压 编译安装启动 启动Hue进程 hue与其他框架的集成 Hue与Hadoop集成 Hue与Hive集成 Hue ...

  4. 【Hadoop离线基础总结】流量日志分析网站整体架构模块开发

    目录 数据仓库设计 维度建模概述 维度建模的三种模式 本项目中数据仓库的设计 ETL开发 创建ODS层数据表 导入ODS层数据 生成ODS层明细宽表 统计分析开发 流量分析 受访分析 访客visit分 ...

  5. 【Hadoop离线基础总结】Hive调优手段

    Hive调优手段 最常用的调优手段 Fetch抓取 MapJoin 分区裁剪 列裁剪 控制map个数以及reduce个数 JVM重用 数据压缩 Fetch的抓取 出现原因 Hive中对某些情况的查询不 ...

  6. 【Hadoop离线基础总结】Sqoop常用命令及参数

    目录 常用命令 常用公用参数 公用参数:数据库连接 公用参数:import 公用参数:export 公用参数:hive 常用命令&参数 从关系表导入--import 导出到关系表--expor ...

  7. 【Hadoop离线基础总结】MapReduce案例之自定义groupingComparator

    MapReduce案例之自定义groupingComparator 求取Top 1的数据 需求 求出每一个订单中成交金额最大的一笔交易 订单id 商品id 成交金额 Order_0000005 Pdt ...

  8. 【Hadoop离线基础总结】工作流调度器azkaban

    目录 Azkaban概述 工作流调度系统的作用 工作流调度系统的实现 常见工作流调度工具对比 Azkaban简单介绍 安装部署 Azkaban的编译 azkaban单服务模式安装与使用 azkaban ...

  9. 【Hadoop离线基础总结】数据仓库和hive的基本概念

    数据仓库和Hive的基本概念 数据仓库 概述 数据仓库英文全称为 Data Warehouse,一般简称为DW.主要目的是构建面向分析的集成化数据环境,主要职责是对仓库中的数据进行分析,支持我们做决策 ...

随机推荐

  1. SVN版本控制器的使用说明(详细过程)

    SVN使用教程总结  SVN简介: 为什么要使用SVN? 程序员在编写程序的过程中,每个程序员都会生成很多不同的版本,这就需要程序员有效的管理代码,在需要的时候可以迅速,准确取出相应的版本. Subv ...

  2. c++ string类的一些使用

    初始化: string类的初始化是不可以用字符进行的,如; string str='c'; string str('c');必须传递字符串字面量作为参数:string本身是用模板类进行实例化的类. s ...

  3. c++ find 函数与count函数

    1 algorithml中的find,还有就是string中的find 对对于第一种其调用形式为 find(start,end,value) start搜寻的起点,end搜寻的终点,要寻找的value ...

  4. Golang Web入门(3):如何优雅的设计中间件

    摘要 在上一篇文章中,我们已经可以实现一个性能较高,且支持RESTful风格的路由了.但是,在Web应用的开发中,我们还需要一些可以被扩展的功能. 因此,在设计框架的过程中,应该留出可以扩展的空间,比 ...

  5. 实例讲解Springboot以Repository方式整合Redis

    1 简介 Redis是高性能的NoSQL数据库,经常作为缓存流行于各大互联网架构中.本文将介绍如何在Springboot中整合Spring Data Redis,使用Repository的方式操作. ...

  6. 15分钟从零开始搭建支持10w+用户的生产环境(二)

    上一篇文章,把这个架构的起因,和操作系统的选择进行了详细说明. 原文地址:15分钟从零开始搭建支持10w+用户的生产环境(一)   二.数据库的选择 对于一个10W+用户的系统,数据库选择很重要. 一 ...

  7. Charles抓包——弱网测试(客户端)

    基础知识 网络延迟:网络延时指一个数据包从用户的计算机发送到网站服务器,然后再立即从网站服务器返回用户计算机的来回时间.通常使用网络管理工具PING(Packet Internet Grope)来测量 ...

  8. Python推荐系统框架:RecQ

    RecQ是一个用于推荐系统的python库(python2.7.x),实现了一些state-of-the-art的推荐算法. github地址:https://github.com/Coder-Yu/ ...

  9. php--static用法

    static关键字声明一个属性或方法是和类相关的,而不是和类的某个特定的实例相关,因此,这类属性或方法也称为“类属性”或“类方法”. 如果访问控制权限允许,可不必创建该类对象而直接使用类名加两个冒号“ ...

  10. 2019-2020-1 20199326《Linux内核原理与分析》第七周作业

    实验内容:分析Linux内核创建一个新进程的过程 初始化Menu Os,输入fork可以看到menuos触发了一个fork系统调用 再开一个shell,进入调试模式,设置几个断点sys_clone,d ...