【NOIP2009】Hankson的趣味题
题意:给出 \(a_0\), \(a_1\), \(b_0\), \(b_1\), 求出正整数 \(x\) 的个数,\(x\) 满足:
\(gcd(x,a_0)=a_1\) , \(lcm(x, b_0)=b_1\) 。
题解:预备知识:设 \(a= {p_1}^{a_1}{p_2}^{{a_2}}{p_3}^{{a_3}}...{p_n}^{{a_n}}\),\(b= {p_1}^{b_1}{p_2}^{{b_2}}{p_3}^{{a_3}}...{p_n}^{{b_n}}\) ,则有:
\(gcd(a,b)={p_1}^{min(a_1,b_1)}{p_2}^{min(a_2,b_2)}{p_3}^{min(a_3,b_3)}...{p_n}^{min(a_n,b_n)}\)
\(lcm(a,b)={p_1}^{max(a_1,b_1)}{p_2}^{max(a_2,b_2)}{p_3}^{max(a_3,b_3)}...{p_n}^{max(a_n,b_n)}\)
根据题目结合上面的性质可以得到如下做法:
考虑枚举质因数 \({p_x}\) ,设 \(a_0\) 的质因数中 \(p_x\) 的系数为 \(t_1\) ,\(a_1\) 的系数为 \(t_2\) , \(x\) 的系数为 \(t\) ,由前面性质可得:\(min(t, t_1)=t_2\) 。分情况讨论:如果 \(t_1 < t_2\) ,那么无解;如果 \(t_1=t_2\) , 那么 \(t\) 要满足 \(t \geq t_2\) ;如果 \(t_1 \gt t_2\) ,那么 \(t = t_2\) .
同理,设 \(b_0\) 的质因数中 \(p_x\) 的系数为 \(t_3\) ,\(a_1\) 的系数为 \(t_4\) , \(x\) 的系数为 \(t\) ,由前面性质可得:\(max(t, t_3)=t_4\) 。分情况讨论:如果 \(t_3 \gt t_4\) ,那么无解;如果 \(t_3=t_4\) , 那么 \(t\) 要满足 \(t \leq t_4\) ;如果 \(t_3 \lt t_4\) ,那么 \(t = t_4\) .
把上面两个合并分类讨论可得:当 \(t_2=t_1\) 且 \(t_4=t_3\) 且 \(t_4 \ge t_2\) ,此时 \(t_2 \le t \le t_4\) , \(ans\) *= \(t_4-t_2+1\) .
下面是无解的 \(3\) 种情况(可简化):
- \(t_2=t_1\) 且 \(t_4=t_3\) 且 \(t_4 \lt t_2\),无解
- \(t_2 \lt t_1\) 或 \(t_4 \gt t_3\) ,无解
- \(t_2 \gt t_1\) 且 \(t_4 \lt t_3\) 且 $ t_2 ≠ t_4$,无解
其他情况对 \(ans\) 无影响 ( \(ans\) *= \(1\) ).
枚举质因数范围为 \(\sqrt{b_1}\) (仅枚举 \(b_1\) 的质因数),故总时间复杂度约为 $ O(n\sqrt{b_1})$ ,可以通过。
#include<cstdio>
inline int _read()
{
int x=0; char c;
for(;c<'0'||c>'9';c=getchar());
for(;c>='0'&&c<='9';c=getchar())x=(x<<1)+(x<<3)+c-'0';
return x;
}
const int N=100000;
bool b[N];
int prime[N],tot,a0,a1,b0,b1,ans;
void GetPrime()
{
for(int i=2;i<=50000;i++)
if(!b[i])
{
prime[++tot]=i;
for(long long j=1ll*i*i;j<=50000;j+=i) b[j]=true;
}
}
void work(int p)
{
int t1=0,t2=0,t3=0,t4=0;
for(;a0%p==0;a0/=p)t1++;//求次数
for(;a1%p==0;a1/=p)t2++;
for(;b0%p==0;b0/=p)t3++;
for(;b1%p==0;b1/=p)t4++;
if(t1==t2&&t3==t4)
{
if(t1<=t3) ans*=(t3-t1+1);
else ans=0; //ans=0即无解
}
if(t1<t2||t3>t4) ans=0;
if(t1>t2&&t3<t4&&t2!=t4) ans=0;
}
int main()
{
int T=_read();
GetPrime(); //预处理质数
while(T--)
{
ans=1;
a0=_read(),a1=_read(),b0=_read(),b1=_read();
for(int i=1;i<=tot;i++)
if(b1%prime[i]==0) work(prime[i]);
//枚举b1的质因数
if(b1>1) work(b1);
printf("%d\n",ans);
}
}
【NOIP2009】Hankson的趣味题的更多相关文章
- 洛谷P1072 [NOIP2009] Hankson 的趣味题
P1072 Hankson 的趣味题 题目描述 Hanks 博士是 BT (Bio-Tech,生物技术) 领域的知名专家,他的儿子名叫 Hankson.现在,刚刚放学回家的 Hankson 正在思考一 ...
- NOIP2009 Hankson 的趣味题 : 数论
题目描述 Hanks 博士是 BT (Bio-Tech,生物技术) 领域的知名专家,他的儿子名叫 Hankson.现在,刚刚放学回家的 Hankson 正在思考一个有趣的问题. 今天在课堂上,老师讲解 ...
- NOIP2009 Hankson的趣味题
题目描述 Description Hanks 博士是BT (Bio-Tech,生物技术) 领域的知名专家,他的儿子名叫Hankson.现在,刚刚放学回家的Hankson 正在思考一个有趣的问题.今天在 ...
- [NOIP2009] $Hankson$ 的趣味题 (数论,gcd)
题目链接 Solution 此题,用到的结论都是比较浅显的,但是,我竟然没想到反过来枚举... 只有50分... 被自己蠢哭... 结论比较浅显: 1.对于两个正整数\(a\),\(b\),设 \(g ...
- [NOIp2009] $Hankson$ 的趣味题
类型:数论 传送门:>Here< 题意:给出四个数$a_0,a_1,b_0,b_1$,求满足$gcd(x,a_0)=a_1,lcm(x,b_0)=b_1$的$x$的个数 解题思路 显然$a ...
- luogu1072 [NOIp2009]Hankson的趣味题 (数学+STL::set)
一个JSB做法 由$\frac{x*b0}{gcd(x,b0)}=b1$,可得$\frac{x}{gcd(x,b0)}=\frac{b1}{b0}$ 设$b2=\frac{b1}{b0}$ 所以对$b ...
- NOIP 2009 Hankson 的趣味题
洛谷 P1072 Hankson 的趣味题 洛谷传送门 JDOJ 1648: [NOIP2009]Hankson的趣味题 T2 JDOJ传送门 Description Hanks 博士是BT (Bio ...
- 「NOIP2009」Hankson 的趣味题
Hankson 的趣味题 [内存限制:$128 MiB$][时间限制:$1000 ms$] [标准输入输出][题目类型:传统][评测方式:文本比较] 题目描述 Hanks 博士是 BT(Bio-Tec ...
- CH3201 Hankson的趣味题
题意 3201 Hankson的趣味题 0x30「数学知识」例题 描述 Hanks博士是BT(Bio-Tech,生物技术)领域的知名专家,他的儿子名叫Hankson.现在,刚刚放学回家的Hankson ...
- 算法训练 Hankson的趣味题
算法训练 Hankson的趣味题 时间限制:1.0s 内存限制:64.0MB 问题描述 Hanks 博士是BT (Bio-Tech,生物技术) 领域的知名专家,他的儿子名叫Han ...
随机推荐
- 《编写高质量iOS与OS X代码的52个有效方法》书籍目录
一.熟悉Objective-C 1.了解Objective-C语言的起源 2.在类的头文件中尽量少引入其他头文件 3.多用字面量语法,少用与之等价的方法 4.多用类型常量,少用#define预处理指令 ...
- JavaWeb--概述
1.Java Web应用由一组Servlet.HTML页.类以及其他可以被绑定的资源构成.它可以在何种供应商提供的实现Servlet规范的Servlet容器中运行: 2.Java Web应用中包含如下 ...
- 修剪草坪 HYSBZ - 2442
在一年前赢得了小镇的最佳草坪比赛后,FJ变得很懒,再也没有修剪过草坪.现在,新一轮的最佳草坪比赛又开始了,FJ希望能够再次夺冠. 然而,FJ的草坪非常脏乱,因此,FJ只能够让他的奶牛来完成这项工作.F ...
- Mongo2Go 介绍
Mongo2Go(https://github.com/Mongo2Go/Mongo2Go )是最新的MongoDB二进制文件的托管包装, 它针对.NET Standard 1.6(对于.NET 4. ...
- IPython 自动重载魔术
在开启IPython 后输入下列命令就可以开启Ipython 的自动重载 %load_ext autoreload %autoreload 2 当你在IPython中导入的函数或类发生修改时,IPyt ...
- Lesson 6 The sporting spirit
How does the writer describe sport at the international level? I am always amazed when I hear people ...
- 转《Python爬虫学习系列教程》学习笔记
http://www.cnblogs.com/xin-xin/p/4297852.html
- 61 C项目------家庭收支软件
1,目标: ①模拟实现一个基于文本界面的<家庭收支软件> ②涉及知识点 局部变量和基本数据类型 循环语句 分支语句 简单的屏幕输出格式控制 2,需求说明: ①模拟实现基于文本界面的< ...
- day04-Python运维开发基础(位运算、代码块、流程控制)
# (7)位运算符: & | ^ << >> ~ var1 = 19 var2 = 15 # & 按位与 res = var1 & var2 " ...
- mybatis连接数据库出错获取不到SQLsession
采用mybatis连接数据库时候出现的问题描述: 数据库连接配置正确,mybatis-config数据库等部分配置均正确,连接数据库是OK的 <properties resource=" ...