import numpy as np
import tensorflow as tf
import matplotlib.pyplot as plt # 定义RNN的参数。
HIDDEN_SIZE = 30 # LSTM中隐藏节点的个数。
NUM_LAYERS = 2 # LSTM的层数。
TIMESTEPS = 10 # 循环神经网络的训练序列长度。
TRAINING_STEPS = 10000 # 训练轮数。
BATCH_SIZE = 32 # batch大小。
TRAINING_EXAMPLES = 10000 # 训练数据个数。
TESTING_EXAMPLES = 1000 # 测试数据个数。
SAMPLE_GAP = 0.01 # 采样间隔。
# 产生正弦数据。
def generate_data(seq):
X = []
y = []
# 序列的第i项和后面的TIMESTEPS-1项合在一起作为输入;第i + TIMESTEPS项作为输
# 出。即用sin函数前面的TIMESTEPS个点的信息,预测第i + TIMESTEPS个点的函数值。
for i in range(len(seq) - TIMESTEPS):
X.append([seq[i: i + TIMESTEPS]])
y.append([seq[i + TIMESTEPS]])
return np.array(X, dtype=np.float32), np.array(y, dtype=np.float32) # 用正弦函数生成训练和测试数据集合。
test_start = (TRAINING_EXAMPLES + TIMESTEPS) * SAMPLE_GAP
test_end = test_start + (TESTING_EXAMPLES + TIMESTEPS) * SAMPLE_GAP
train_X, train_y = generate_data(np.sin(np.linspace(0, test_start, TRAINING_EXAMPLES + TIMESTEPS, dtype=np.float32)))
test_X, test_y = generate_data(np.sin(np.linspace(test_start, test_end, TESTING_EXAMPLES + TIMESTEPS, dtype=np.float32)))
#  定义网络结构和优化步骤。
def lstm_model(X, y, is_training):
# 使用多层的LSTM结构。
cell = tf.nn.rnn_cell.MultiRNNCell([tf.nn.rnn_cell.BasicLSTMCell(HIDDEN_SIZE) for _ in range(NUM_LAYERS)]) # 使用TensorFlow接口将多层的LSTM结构连接成RNN网络并计算其前向传播结果。
outputs, _ = tf.nn.dynamic_rnn(cell, X, dtype=tf.float32)
output = outputs[:, -1, :] # 对LSTM网络的输出再做加一层全链接层并计算损失。注意这里默认的损失为平均
# 平方差损失函数。
predictions = tf.contrib.layers.fully_connected(output, 1, activation_fn=None) # 只在训练时计算损失函数和优化步骤。测试时直接返回预测结果。
if not is_training:
return predictions, None, None # 计算损失函数。
loss = tf.losses.mean_squared_error(labels=y, predictions=predictions) # 创建模型优化器并得到优化步骤。
train_op = tf.contrib.layers.optimize_loss(loss, tf.train.get_global_step(),optimizer="Adagrad", learning_rate=0.1)
return predictions, loss, train_op
# 定义测试方法。
def run_eval(sess, test_X, test_y):
# 将测试数据以数据集的方式提供给计算图。
ds = tf.data.Dataset.from_tensor_slices((test_X, test_y))
ds = ds.batch(1)
X, y = ds.make_one_shot_iterator().get_next() # 调用模型得到计算结果。这里不需要输入真实的y值。
with tf.variable_scope("model", reuse=True):
prediction, _, _ = lstm_model(X, [0.0], False) # 将预测结果存入一个数组。
predictions = []
labels = []
for i in range(TESTING_EXAMPLES):
p, l = sess.run([prediction, y])
predictions.append(p)
labels.append(l) # 计算rmse作为评价指标。
predictions = np.array(predictions).squeeze()
labels = np.array(labels).squeeze()
rmse = np.sqrt(((predictions - labels) ** 2).mean(axis=0))
print("Root Mean Square Error is: %f" % rmse) #对预测的sin函数曲线进行绘图。
plt.figure()
plt.plot(predictions, label='predictions')
plt.plot(labels, label='real_sin')
plt.legend()
plt.show()
#  执行训练和测试。
# 将训练数据以数据集的方式提供给计算图。
ds = tf.data.Dataset.from_tensor_slices((train_X, train_y))
ds = ds.repeat().shuffle(1000).batch(BATCH_SIZE)
X, y = ds.make_one_shot_iterator().get_next() # 定义模型,得到预测结果、损失函数,和训练操作。
with tf.variable_scope("model"):
_, loss, train_op = lstm_model(X, y, True) with tf.Session() as sess:
sess.run(tf.global_variables_initializer()) # 测试在训练之前的模型效果。
print("Evaluate model before training.")
run_eval(sess, test_X, test_y) # 训练模型。
for i in range(TRAINING_STEPS):
_, l = sess.run([train_op, loss])
if i % 1000 == 0:
print("train step: " + str(i) + ", loss: " + str(l)) # 使用训练好的模型对测试数据进行预测。
print("Evaluate model after training.")
run_eval(sess, test_X, test_y)

吴裕雄--天生自然 pythonTensorFlow图形数据处理:循环神经网络预测正弦函数的更多相关文章

  1. 吴裕雄--天生自然 pythonTensorFlow图形数据处理:数据集高层操作

    import tempfile import tensorflow as tf # 1. 列举输入文件. # 输入数据生成的训练和测试数据. train_files = tf.train.match_ ...

  2. 吴裕雄--天生自然 pythonTensorFlow图形数据处理:输入数据处理框架

    import tensorflow as tf # 1. 创建文件列表,通过文件列表创建输入文件队列 files = tf.train.match_filenames_once("F:\\o ...

  3. 吴裕雄--天生自然 pythonTensorFlow图形数据处理:数据集基本使用方法

    import tempfile import tensorflow as tf # 1. 从数组创建数据集. input_data = [1, 2, 3, 5, 8] dataset = tf.dat ...

  4. 吴裕雄--天生自然 pythonTensorFlow图形数据处理:输入文件队列

    import tensorflow as tf # 1. 生成文件存储样例数据. def _int64_feature(value): return tf.train.Feature(int64_li ...

  5. 吴裕雄--天生自然 pythonTensorFlow图形数据处理:多线程队列操作

    import tensorflow as tf #1. 定义队列及其操作. queue = tf.FIFOQueue(100,"float") enqueue_op = queue ...

  6. 吴裕雄--天生自然 pythonTensorFlow图形数据处理:队列操作

    import tensorflow as tf #1. 创建队列,并操作里面的元素. q = tf.FIFOQueue(2, "int32") init = q.enqueue_m ...

  7. 吴裕雄--天生自然 pythonTensorFlow图形数据处理:图像预处理完整样例

    import numpy as np import tensorflow as tf import matplotlib.pyplot as plt #随机调整图片的色彩,定义两种顺序. def di ...

  8. 吴裕雄--天生自然 pythonTensorFlow图形数据处理:TensorFlow图像处理函数

    import numpy as np import tensorflow as tf import matplotlib.pyplot as plt #读取图片 image_raw_data = tf ...

  9. 吴裕雄--天生自然 pythonTensorFlow图形数据处理:读取MNIST手写图片数据写入的TFRecord文件

    import numpy as np import tensorflow as tf from tensorflow.examples.tutorials.mnist import input_dat ...

随机推荐

  1. Java进阶之路 - 1.走近Java

    Java进阶之路 - 1.走近Java 一.走近Java思维导图

  2. C++编程学习(三)运算符

    一.运算符 1.求余运算双方必须是整数. 2.编程时一定要注意运算符的优先级!!!例如: int a=5,b=6,c=6,k; 3>4 //结果为假 a<b //结果为真 k= b!=c ...

  3. linux 批量kill php进程

    一.执行以下命令 ps -ef|grep php|grep -v grep|cut -c 9-15|xargs kill -9     管道符“|”用来隔开两个命令,管道符左边命令的输出会作为管道符右 ...

  4. css 居中布局方案

    position(transform css3  有些浏览器不兼容) <article id="one"> <section id="section&q ...

  5. Gym - 101142C CodeCoder vs TopForces(搜索)

    题意:给定n个人在两个网站上的得分,一个人若能在任意一个网站里战胜另一个人,则认为这个人能战胜那个人.问每个人都能战胜多少人. 分析: 1.战胜具有传递性. 例如: 4 5 2 7 3 3 因为第三个 ...

  6. soupui--替换整个case的url

    添加新的URL 随便进入一个case的[REST]step,添加新的url 更换URL 添加完之后双击想要更换url的case,在弹出的窗口中点击URL按钮 在弹出的set endpoint窗口中选择 ...

  7. Spring的配置文件说明

    <?xml version="1.0" encoding="UTF-8"?> <beans xmlns="http://www.sp ...

  8. 百度网盘下载神器 PanDownload v2.0.9(破解版、不限速)

    一直用这个软件来下载百度网盘的东西,不限速,贼爽.  链接:https://pan.baidu.com/s/1UjF47YWd2v9x52c5sjhutQ 提取码:v9pe 也可以直接到官网下载:ht ...

  9. mac item2自定义光标移动快捷键,移动行首行尾,按单词跳转

    To jump between words and start/end of lines in iTerm2 follow these steps: iTerm2 -> Preferences ...

  10. .NET 软件下面win10自动启动配置

    1.设置所有用户登录都能启动,打开文件夹 C:\ProgramData\Microsoft\Windows\Start Menu\Programs\StartUp 2.给要启动的应用程序创建快捷方式, ...