吴裕雄--天生自然 pythonTensorFlow图形数据处理:循环神经网络预测正弦函数
import numpy as np
import tensorflow as tf
import matplotlib.pyplot as plt # 定义RNN的参数。
HIDDEN_SIZE = 30 # LSTM中隐藏节点的个数。
NUM_LAYERS = 2 # LSTM的层数。
TIMESTEPS = 10 # 循环神经网络的训练序列长度。
TRAINING_STEPS = 10000 # 训练轮数。
BATCH_SIZE = 32 # batch大小。
TRAINING_EXAMPLES = 10000 # 训练数据个数。
TESTING_EXAMPLES = 1000 # 测试数据个数。
SAMPLE_GAP = 0.01 # 采样间隔。
# 产生正弦数据。
def generate_data(seq):
X = []
y = []
# 序列的第i项和后面的TIMESTEPS-1项合在一起作为输入;第i + TIMESTEPS项作为输
# 出。即用sin函数前面的TIMESTEPS个点的信息,预测第i + TIMESTEPS个点的函数值。
for i in range(len(seq) - TIMESTEPS):
X.append([seq[i: i + TIMESTEPS]])
y.append([seq[i + TIMESTEPS]])
return np.array(X, dtype=np.float32), np.array(y, dtype=np.float32) # 用正弦函数生成训练和测试数据集合。
test_start = (TRAINING_EXAMPLES + TIMESTEPS) * SAMPLE_GAP
test_end = test_start + (TESTING_EXAMPLES + TIMESTEPS) * SAMPLE_GAP
train_X, train_y = generate_data(np.sin(np.linspace(0, test_start, TRAINING_EXAMPLES + TIMESTEPS, dtype=np.float32)))
test_X, test_y = generate_data(np.sin(np.linspace(test_start, test_end, TESTING_EXAMPLES + TIMESTEPS, dtype=np.float32)))
# 定义网络结构和优化步骤。
def lstm_model(X, y, is_training):
# 使用多层的LSTM结构。
cell = tf.nn.rnn_cell.MultiRNNCell([tf.nn.rnn_cell.BasicLSTMCell(HIDDEN_SIZE) for _ in range(NUM_LAYERS)]) # 使用TensorFlow接口将多层的LSTM结构连接成RNN网络并计算其前向传播结果。
outputs, _ = tf.nn.dynamic_rnn(cell, X, dtype=tf.float32)
output = outputs[:, -1, :] # 对LSTM网络的输出再做加一层全链接层并计算损失。注意这里默认的损失为平均
# 平方差损失函数。
predictions = tf.contrib.layers.fully_connected(output, 1, activation_fn=None) # 只在训练时计算损失函数和优化步骤。测试时直接返回预测结果。
if not is_training:
return predictions, None, None # 计算损失函数。
loss = tf.losses.mean_squared_error(labels=y, predictions=predictions) # 创建模型优化器并得到优化步骤。
train_op = tf.contrib.layers.optimize_loss(loss, tf.train.get_global_step(),optimizer="Adagrad", learning_rate=0.1)
return predictions, loss, train_op
# 定义测试方法。
def run_eval(sess, test_X, test_y):
# 将测试数据以数据集的方式提供给计算图。
ds = tf.data.Dataset.from_tensor_slices((test_X, test_y))
ds = ds.batch(1)
X, y = ds.make_one_shot_iterator().get_next() # 调用模型得到计算结果。这里不需要输入真实的y值。
with tf.variable_scope("model", reuse=True):
prediction, _, _ = lstm_model(X, [0.0], False) # 将预测结果存入一个数组。
predictions = []
labels = []
for i in range(TESTING_EXAMPLES):
p, l = sess.run([prediction, y])
predictions.append(p)
labels.append(l) # 计算rmse作为评价指标。
predictions = np.array(predictions).squeeze()
labels = np.array(labels).squeeze()
rmse = np.sqrt(((predictions - labels) ** 2).mean(axis=0))
print("Root Mean Square Error is: %f" % rmse) #对预测的sin函数曲线进行绘图。
plt.figure()
plt.plot(predictions, label='predictions')
plt.plot(labels, label='real_sin')
plt.legend()
plt.show()
# 执行训练和测试。
# 将训练数据以数据集的方式提供给计算图。
ds = tf.data.Dataset.from_tensor_slices((train_X, train_y))
ds = ds.repeat().shuffle(1000).batch(BATCH_SIZE)
X, y = ds.make_one_shot_iterator().get_next() # 定义模型,得到预测结果、损失函数,和训练操作。
with tf.variable_scope("model"):
_, loss, train_op = lstm_model(X, y, True) with tf.Session() as sess:
sess.run(tf.global_variables_initializer()) # 测试在训练之前的模型效果。
print("Evaluate model before training.")
run_eval(sess, test_X, test_y) # 训练模型。
for i in range(TRAINING_STEPS):
_, l = sess.run([train_op, loss])
if i % 1000 == 0:
print("train step: " + str(i) + ", loss: " + str(l)) # 使用训练好的模型对测试数据进行预测。
print("Evaluate model after training.")
run_eval(sess, test_X, test_y)
吴裕雄--天生自然 pythonTensorFlow图形数据处理:循环神经网络预测正弦函数的更多相关文章
- 吴裕雄--天生自然 pythonTensorFlow图形数据处理:数据集高层操作
import tempfile import tensorflow as tf # 1. 列举输入文件. # 输入数据生成的训练和测试数据. train_files = tf.train.match_ ...
- 吴裕雄--天生自然 pythonTensorFlow图形数据处理:输入数据处理框架
import tensorflow as tf # 1. 创建文件列表,通过文件列表创建输入文件队列 files = tf.train.match_filenames_once("F:\\o ...
- 吴裕雄--天生自然 pythonTensorFlow图形数据处理:数据集基本使用方法
import tempfile import tensorflow as tf # 1. 从数组创建数据集. input_data = [1, 2, 3, 5, 8] dataset = tf.dat ...
- 吴裕雄--天生自然 pythonTensorFlow图形数据处理:输入文件队列
import tensorflow as tf # 1. 生成文件存储样例数据. def _int64_feature(value): return tf.train.Feature(int64_li ...
- 吴裕雄--天生自然 pythonTensorFlow图形数据处理:多线程队列操作
import tensorflow as tf #1. 定义队列及其操作. queue = tf.FIFOQueue(100,"float") enqueue_op = queue ...
- 吴裕雄--天生自然 pythonTensorFlow图形数据处理:队列操作
import tensorflow as tf #1. 创建队列,并操作里面的元素. q = tf.FIFOQueue(2, "int32") init = q.enqueue_m ...
- 吴裕雄--天生自然 pythonTensorFlow图形数据处理:图像预处理完整样例
import numpy as np import tensorflow as tf import matplotlib.pyplot as plt #随机调整图片的色彩,定义两种顺序. def di ...
- 吴裕雄--天生自然 pythonTensorFlow图形数据处理:TensorFlow图像处理函数
import numpy as np import tensorflow as tf import matplotlib.pyplot as plt #读取图片 image_raw_data = tf ...
- 吴裕雄--天生自然 pythonTensorFlow图形数据处理:读取MNIST手写图片数据写入的TFRecord文件
import numpy as np import tensorflow as tf from tensorflow.examples.tutorials.mnist import input_dat ...
随机推荐
- C++ 编程学习(六) 函数
零.小知识点 1.函数返回类型可以是除数组外的自定义类型 一.传值调用 向函数传递参数的传值调用方法,把参数的实际值复制给函数的形式参数.在这种情况下,修改函数内的形式参数不会影响实际参数. 默认情况 ...
- PHP日期函数
在正式学习日期函数前大家得了解几个概念: 1.时区 2.世界时 3.unix时间戳 时区 这个概念,之前大家听说过很多.我们来啰嗦两句,我们现实生活中使用的实区,在电脑里面也是一样有规定的.1884年 ...
- 原生js完成打地鼠小游戏
:这是首页,有简单模式和地狱模式两种模式进行选择 这是选择完模式之后的游戏界面:30秒一局游戏倒计时,每打中一只老鼠加一分,没砸中减一分,没砸不加不减 首先准备几张图片 html代码: <!-- ...
- mysql 锁表的处理方式
MySQL错误:ERROR 1205 (HY000): Lock wait timeout 处理方案: 执行mysql命令:show full processlist; 然后找出插入语句的 ...
- CSS属性之float浮动属性
float 属性定义元素在哪个方向浮动.以往这个属性总应用于图像,使文本围绕在图像周围,不过在 CSS 中,任何元素都可以浮动.浮动元素会生成一个块级框,而不论它本身是何种元素. float有四个属性 ...
- (7)opencv图片内部的基本处理
就是,给定我们一张图片,我们可以对图片的每一个像素的色彩进行处理 比如,我们的原图是这个样子 然后我首先将他变成灰度图(灰度图的行道是1,就是chanaual是1) 然后,我又将灰色图片的黑白进行颠倒 ...
- 吴裕雄--天生自然JAVA SPRING框架开发学习笔记:第一个Spring程序
1. 创建项目 在 MyEclipse 中创建 Web 项目 springDemo01,将 Spring 框架所需的 JAR 包复制到项目的 lib 目录中,并将添加到类路径下,添加后的项目如图 2. ...
- Nginx之epoll和select poll
epoll和 select poll 都是做I/O多路复用的. 区别在于: epoll较灵活,如果有一百万个链接状态同时保持,但是在某个时刻,只有几百个链接是活跃的.epoll的处理是通过epoll_ ...
- salt教程1-理解saltstack
https://docs.saltstack.com/en/getstarted/system/index.html 1 基本介绍 通过观察它的实际运行,你可以大致理解salt如何工作.这意味着,在控 ...
- POJ1200 A - Crazy Search(哈希)
A - Crazy Search Many people like to solve hard puzzles some of which may lead them to madness. One ...