题目:一只青蛙一次可以跳上1级台阶,也可以跳上2级。求该青蛙跳上一个n级的台阶总共有多少种跳法(先后次序不同算不同的结果)。

对于本题,前提只有 一次 1阶或者2阶的跳法。

a.如果两种跳法,1阶或者2阶,那么假定第一次跳的是一阶,那么剩下的是n-1个台阶,跳法是f(n-1);

b.假定第一次跳的是2阶,那么剩下的是n-2个台阶,跳法是f(n-2)

c.由a\b假设可以得出总跳法为: f(n) = f(n-1) + f(n-2)

d.然后通过实际的情况可以得出:只有一阶的时候 f(1) = 1 ,只有两阶的时候可以有 f(2) = 2

e.可以发现最终得出的是一个斐波那契数列:

| 1, (n=1)

f(n) =     | 2, (n=2)

              | f(n-1)+f(n-2) ,(n>2,n为整数)
 
 
 public class Solution {
public int JumpFloor(int target) {
if(target == 1){
return 1;
}
if (target == 2){
return 2;
}
//n >=3
return JumpFloor(target - 1) + JumpFloor(target -2);
}
}

剑指offer【09】- 跳台阶的更多相关文章

  1. 《剑指offer》 跳台阶

    本题来自<剑指offer> 跳台阶 题目1: 一只青蛙一次可以跳上1级台阶,也可以跳上2级.求该青蛙跳上一个n级的台阶总共有多少种跳法(先后次序不同算不同的结果). 思路: 同上一篇. C ...

  2. 剑指offer:跳台阶

    目录 题目 解题思路 具体代码 题目 题目链接 剑指offer:跳台阶 题目描述 一只青蛙一次可以跳上1级台阶,也可以跳上2级.求该青蛙跳上一个n级的台阶总共有多少种跳法(先后次序不同算不同的结果). ...

  3. 剑指offer:跳台阶问题

    基础跳台阶 题目 一只青蛙一次可以跳上1级台阶,也可以跳上2级.求该青蛙跳上一个n级的台阶总共有多少种跳法(先后次序不同算不同的结果). 解题思路 这道题就是斐波那契数列的变形问法,因为跳上第N个台阶 ...

  4. Go语言实现:【剑指offer】跳台阶

    该题目来源于牛客网<剑指offer>专题. 一只青蛙一次可以跳上1级台阶,也可以跳上2级.求该青蛙跳上一个n级的台阶总共有多少种跳法(先后次序不同算不同的结果). 1阶:共1种跳法: 2阶 ...

  5. 剑指offer例题——跳台阶、变态跳台阶

    题目:一只青蛙一次可以跳上1级台阶,也可以跳上2级.求该青蛙跳上一个n级的台阶总共有多少种跳法(先后次序不同算不同的结果). 思路: n<=0时,有0种跳法 n=1时,只有一种跳法 n=2时,有 ...

  6. 【牛客网-剑指offer】跳台阶

    题目: 一只青蛙一次可以跳上1级台阶,也可以跳上2级.求该青蛙跳上一个n级的台阶总共有多少种跳法(先后次序不同算不同的结果). 考点: 递归和循环 思路: 1)利用二叉树,左孩子为跳一级,右孩子为跳两 ...

  7. 剑指offer :跳台阶

    这题之前刷leetcode也遇到过,感觉是跟斐波拉契差不多的题. 题目描述: 一只青蛙一次可以跳上1级台阶,也可以跳上2级.求该青蛙跳上一个n级的台阶总共有多少种跳法(先后次序不同算不同的结果). 解 ...

  8. (原)剑指offer变态跳台阶

    变态跳台阶 时间限制:1秒空间限制:32768K 题目描述 一只青蛙一次可以跳上1级台阶,也可以跳上2级……它也可以跳上n级.求该青蛙跳上一个n级的台阶总共有多少种跳法.   分析一下明天是个斐波那契 ...

  9. 牛客网——剑指offer(跳台阶以及变态跳台阶_java实现)

    首先说一个剪枝的概念: 剪枝出现在递归和类递归程序里,因为递归操作用图来表示就是一棵树,树有很多分叉,如果不作处理,就有很多重复分叉,会降低效率,如果能把这些分叉先行记录下来,就可以大大提升效率——这 ...

  10. 剑指Offer 变态跳台阶

    题目描述 一只青蛙一次可以跳上1级台阶,也可以跳上2级……它也可以跳上n级.求该青蛙跳上一个n级的台阶总共有多少种跳法.   其实就是斐波那契数列问题. 假设f(n)是n个台阶跳的次数. f(1) = ...

随机推荐

  1. mark LINUX_6.8 python_2.6.6 setup版本升级 python 2.7.9 安装 pip 临时使用国内镜像源库 指定模块版本 删除指定模块

    简单但却又经常需要使用  网上  贴子也很多  也经常用  所以 做个mark 吧: 1首先下载python2.7.9 源tar包 源码安装 可利用linux自带下载工具wget下载,如下所示:   ...

  2. 51nod 1435:位数阶乘

    1435 位数阶乘 题目来源: CodeForces 基准时间限制:1 秒 空间限制:131072 KB 分值: 40 难度:4级算法题  收藏  关注 X是一个n位数的正整数 (x=a0a1...a ...

  3. jquery 获取同级元素

    $(".userinfo-three:eq(0)").css({                 "width": winWidth * 300 / 1080, ...

  4. 对OpenSSL心脏出血漏洞的试验

    1.安装OpenSSL环境 sudo apt-get install openssl sudo pip install pyopenssl(中间会提示ffi.h 没有那个文件或目录,sudo apt- ...

  5. Maven - Repository(存储库)

    版权所有,未经授权,禁止转载 章节 Maven – 简介 Maven – 工作原理 Maven – Repository(存储库) Maven – pom.xml 文件 Maven – 依赖管理 Ma ...

  6. spring boot2 运行环境

    1.springboot个版本系统需求 spring boot maven jdk 内置tomcat 内置jetty servlet 2.0.x 3.2+ 8或9 8.5(3.1) 9.4(3.1) ...

  7. windows FTP上传

    TCHAR tcFileName[MAX_PATH * 4] = {L"visio2010永久安装密钥.txt"}; TCHAR tcName[MAX_PATH * 4] = {0 ...

  8. Linux误删所有内核,恢复内核的解决办法

    前言 我用df -h命令查看磁盘使用情况的时候发现,系统根目录空间已经比较小了,于是我就使用clean命令对系统内核进行清理,一不小心,就把所有的内核删除了,你很有可能也是我的这种经历,非常的崩溃.好 ...

  9. P3241 [HNOI2015]开店

    题解:动态点分治 建立点分树 每个点维护点分树子树内节点到这个节点和父亲节点距离的前缀和 二分查找锁定合法区间 对每个祖先分治中心查询路径和然后减去不合法子树内的路径和 注意:求大量LCA时用树剖 不 ...

  10. 云服务器Linux版本下---安装git

    xshell进入云服务器: 按照git官网:https://git-scm.com/download/linux   的教程输入: apt-get install git 本地没有包????? 原来是 ...