[Hello 2020] C. New Year and Permutation (组合数学)

C. New Year and Permutation

time limit per test

1 second

memory limit per test

1024 megabytes

input

standard input

output

standard output

Recall that the permutation is an array consisting of nn distinct integers from 11 to nn in arbitrary order. For example, [2,3,1,5,4][2,3,1,5,4] is a permutation, but [1,2,2][1,2,2] is not a permutation (22 appears twice in the array) and [1,3,4][1,3,4] is also not a permutation (n=3n=3 but there is 44 in the array).

A sequence aa is a subsegment of a sequence bb if aa can be obtained from bb by deletion of several (possibly, zero or all) elements from the beginning and several (possibly, zero or all) elements from the end. We will denote the subsegments as [l,r][l,r], where l,rl,r are two integers with 1≤l≤r≤n1≤l≤r≤n. This indicates the subsegment where l−1l−1 elements from the beginning and n−rn−r elements from the end are deleted from the sequence.

For a permutation p1,p2,…,pnp1,p2,…,pn, we define a framed segment as a subsegment [l,r][l,r] where max{pl,pl+1,…,pr}−min{pl,pl+1,…,pr}=r−lmax{pl,pl+1,…,pr}−min{pl,pl+1,…,pr}=r−l. For example, for the permutation (6,7,1,8,5,3,2,4)(6,7,1,8,5,3,2,4) some of its framed segments are: [1,2],[5,8],[6,7],[3,3],[8,8][1,2],[5,8],[6,7],[3,3],[8,8]. In particular, a subsegment [i,i][i,i] is always a framed segments for any ii between 11 and nn, inclusive.

We define the happiness of a permutation pp as the number of pairs (l,r)(l,r) such that 1≤l≤r≤n1≤l≤r≤n, and [l,r][l,r] is a framed segment. For example, the permutation [3,1,2][3,1,2] has happiness 55: all segments except [1,2][1,2] are framed segments.

Given integers nn and mm, Jongwon wants to compute the sum of happiness for all permutations of length nn, modulo the prime number mm. Note that there exist n!n! (factorial of nn) different permutations of length nn.

Input

The only line contains two integers nn and mm (1≤n≤2500001≤n≤250000, 108≤m≤109108≤m≤109, mm is prime).

Output

Print rr (0≤r<m0≤r<m), the sum of happiness for all permutations of length nn, modulo a prime number mm.

Examples

input

Copy

1 993244853

output

Copy

1

input

Copy

2 993244853

output

Copy

6

input

Copy

3 993244853

output

Copy

32

input

Copy

2019 993244853

output

Copy

923958830

input

Copy

2020 437122297

output

Copy

265955509

Note

For sample input n=3n=3, let's consider all permutations of length 33:

  • [1,2,3][1,2,3], all subsegments are framed segment. Happiness is 66.
  • [1,3,2][1,3,2], all subsegments except [1,2][1,2] are framed segment. Happiness is 55.
  • [2,1,3][2,1,3], all subsegments except [2,3][2,3] are framed segment. Happiness is 55.
  • [2,3,1][2,3,1], all subsegments except [2,3][2,3] are framed segment. Happiness is 55.
  • [3,1,2][3,1,2], all subsegments except [1,2][1,2] are framed segment. Happiness is 55.
  • [3,2,1][3,2,1], all subsegments are framed segment. Happiness is 66.

Thus, the sum of happiness is 6+5+5+5+5+6=326+5+5+5+5+6=32.

题意:

给定一个数字n和 一个质数m,

问n的所有全排列的good值sum和,每一个排列的good值使有多少个点对pair(i,j) 是framed subsegment

使 \(i<=j\) 且 \(\max\{p_l, p_{l+1}, \dots, p_r\} - \min\{p_l, p_{l+1}, \dots, p_r\} = r - l\)

思路:

如果\([l,r]\) 是framed subsegment ,那么所有\([min_{i = l}^{r} p_i, max_{i = l}^{r} p_i]\) 范围内的数都必须在区间\([l,r]\) 中。

我们定义 区间\([l,r]\) 的长度 \(len= r-l+1\) ,那么 长度为len的framed subsegment 的范围一共有n-len+1 种。

例如 n=3,len=2,有2种范围 : ①\([1,2]\) ②\([2,3]\)

而长度为len的framed subsegment 又有\(len!\) 种排列方式

例如: 范围是\([1,2]\) 有\(2!\) 种排列方式,(1,2) and (2 ,1 ) 且都符合要求。

除了 长度为len的framed subsegment 的范围 的数有 n-len 个,它们任意排列后再将framed subsegment 整体插入都对满足条件没有影响。

所以任意排列有\((n-len)!\) 方式,插板法 有\(n-len+1\) 种方式。

所以 长度为len的framed subsegment 的方式个数为:

\((n-len+1)^2*fac[len]*fac[n-len]\),fac[i] 为 i的阶乘

所以我们只需要预处理0~n的所有阶乘后在\([1,n]\)范围内枚举len 即可得到答案。

ps:记得取模。

代码:

ll m;
int n;
ll fac[maxn]; int main()
{
//freopen("D:\\code\\text\\input.txt","r",stdin);
//freopen("D:\\code\\text\\output.txt","w",stdout);
n = readint();
m = readll();
fac[0] = 1ll;
repd(i, 1, n)
{
fac[i] = fac[i - 1] * i % m;
}
ll ans = 0ll;
repd(i, 1, n)
{
ans += (1ll * (n - i + 1) % m * fac[i] % m * fac[n - i] % m * (n - i + 1) % m);
ans %= m;
}
printf("%lld\n", ans );
return 0;
}

[Hello 2020] C. New Year and Permutation (组合数学)的更多相关文章

  1. Wannafly Winter Camp 2020 Day 6D 递增递增 - dp,组合数学

    给定两个常为 \(n\) 的序列 \(l_i,r_i\),问夹在它们之间 ( \(\forall i, l_i \leq a_i \leq r_i\) ) 的不降序列的元素总和. Solution 先 ...

  2. HDU 6044 Limited Permutation 读入挂+组合数学

    Limited Permutation Problem Description As to a permutation p1,p2,⋯,pn from 1 to n, it is uncomplica ...

  3. codeforces 1284C. New Year and Permutation(组合数学)

    链接:https://codeforces.com/problemset/problem/1284/C 题意:定义一个framed segment,在区间[l,r]中,max值-min值 = r - ...

  4. hdu 6044 : Limited Permutation (2017 多校第一场 1012) 【输入挂 组合数学】

    题目链接 参考博客: http://blog.csdn.net/jinglinxiao/article/details/76165353 http://blog.csdn.net/qq_3175920 ...

  5. Wannafly Camp 2020 Day 1C 染色图 - 组合数学,整除分块

    定义一张无向图 G=⟨V,E⟩ 是 k 可染色的当且仅当存在函数 f:V↦{1,2,⋯,k} 满足对于 G 中的任何一条边 (u,v),都有 f(u)≠f(v). 定义函数 g(n,k) 的值为所有包 ...

  6. Codeforces Global Round 7 C. Permutation Partitions(组合数学)

    题意: 给你 n 长全排列的一种情况,将其分为 k 份,取每份中的最大值相加,输出和的最大值和有多少种分法等于最大值. 思路: 取前 k 大值,储存下标,每两个 k 大值间有 vi+1 - vi 种分 ...

  7. Colorful Bricks CodeForces - 1081C ( 组合数学 或 DP )

    On his free time, Chouti likes doing some housework. He has got one new task, paint some bricks in t ...

  8. Algorithm: Permutation & Combination

    组合计数 组合数学主要是研究一组离散对象满足一定条件的安排的存在性.构造及计数问题.计数理论是狭义组合数学中最基本的一个研究方向,主要研究的是满足一定条件的排列组合及计数问题.组合计数包含计数原理.计 ...

  9. Mysterious Crime CodeForces - 1043D (思维+组合数学)

    Acingel is a small town. There was only one doctor here — Miss Ada. She was very friendly and nobody ...

随机推荐

  1. Pychram 运行程序在 run 窗口和 python console 窗口之间切换

    有图有真相 第一步: 第二步:

  2. 《掌握融资必备知识》---创业学习---训练营第一课---HHR---

    一,<开始学习> 1,四个思考题: (1)从你决定开始融资,到你拿到钱,你都需要经历哪些环节? (2)你知道投资机构内部的工作流程吗? (3)融资最好的时机是什么时候? (4)创投圈的专业 ...

  3. Nmap工具用法详解

    Nmap                                       Network  Mapper    是一款开放源代码的网络探测和安全审核工具   1.介绍  

  4. 主席树(可持久化线段树)静态区间第K小

    传送门主席树 #include <bits/stdc++.h> #define int long long using namespace std; const int maxn=2e5+ ...

  5. 17 JavaScript Cookies

    关于Cookie: Cookie是存储在电脑上的文本文件中的一些数据 Cookie致力于解决如何在连接关闭后记录客户单的用户信息 Cookie以键值对的形式存储,例如username=John Doe ...

  6. socket中文奇数个出现乱码的解决办法

    用MyEclipse试了一下JAVA获取系统正在运行进程代码,结果Console输出的时候中文部分输出为乱码,在网上找了很多办法,都没有解决问题.后来发现一个方法,解决了问题,特此分享. 下面成功解决 ...

  7. Esp32的一些资料链接

    http://wiki.ai-thinker.com/doku.php/utils/esp32_idf_menuconfig   http://wiki.ai-thinker.com/doku.php ...

  8. JAVAWeb问题总结(持续更新)

    1.在JSP页面头部,出现如下错误: 错误文本: Multiple annotations found at this line: - The superclass "javax.servl ...

  9. 【Android多线程】异步任务AsyncTask类

    https://www.bilibili.com/video/av65170691?p=9 (本文为此视频观看笔记) 一.为什么需要此类 Handler繁琐 二.理解AsyncTask 2.1 参数( ...

  10. 使用YII缓存注意事项

    在使用YII自身缓存时,在main.php文件配置中一定要配置keyPrefix,如下图: 'cache' => array( 'class' => 'CFileCache', 'keyP ...