总时间限制:
1000ms
内存限制:
65536kB
描述

给定n个1到9的数字,要求在数字之间摆放m个加号(加号两边必须有数字),使得所得到的加法表达式的值最小,并输出该值。例如,在1234中摆放1个加号,最好的摆法就是12+34,和为36

输入
有不超过15组数据
每组数据两行。第一行是整数m,表示有m个加号要放( 0<=m<=50)
第二行是若干个数字。数字总数n不超过50,且 m <= n-1
输出
对每组数据,输出最小加法表达式的值
样例输入
2
123456
1
123456
4
12345
样例输出
102
579
15
提示
要用到高精度计算,即用数组来存放long long 都装不下的大整数,并用模拟列竖式的办法进行大整数的加法。
来源
Guo Wei

题解:

本题难点在于利用数组实现高精度运算,模拟加减乘除
假设数字串的长度为 n,求将 m 个加号放入该字符串所形成的最小值
首先,分解子问题,规定最后一个加号的位置,假设将最后一个加号放在第 i 个数字后面,这时该问题就变成了在前i个数字中插入m - 1个加号所形成的最小值,加上第i + 1到第 n 个数字所组成的数的值( i 从 1 算起)
所以可以定义一个字符串加的函数add,利用引用型参数传递值。注意:字符串相加减,一定要注意高低位之分,可以在之前将字符串反转(可用STL中的 reverse(str.begin() , str.end()) 函数)
 void add(string &num1, string &num2, string &num3) {
int l1 = num1.length();
int l2 = num2.length();
int c = ;//进位标志
int maxl = Maxlen; for(int i = ; i < maxl; i++) {
int t;
if(i < l1 && i < l2) {
t = num1[i] + num2[i] - * '' + c;
}
else if(i < l1 && i >= l2) {
t = num1[i] - '' + c;
}
else if(i >= l1 && i < l2) {
t = num2[i] - '' + c;
}
else {
break;
}
num3.append(, t % + '');
c = t / ;
}
while (c)
{
num3.append(,c%+'');
c /= ;
}
}
总代码:
 #include<iostream>
using namespace std;
#include<cstring>
#include<string>
#include<algorithm>
#include<stdlib.h> const int Maxlen = ;
const string maxv = "";
string ret[Maxlen][Maxlen];
string num[Maxlen][Maxlen]; int cmp(string &num1, string &num2) {
int l1 = num1.length();
int l2 = num2.length();
if(l1 != l2) {
return (l1 - l2);
}
else {
for(int i = l1 - ; i >= ; i--) {
if(num1[i] != num2[i]) {
return (num1[i] - num2[i]);
}
}
return ;
}
} void add(string &num1, string &num2, string &num3) {
int l1 = num1.length();
int l2 = num2.length();
int c = ;//进位标志
int maxl = Maxlen; for(int i = ; i < maxl; i++) {
int t;
if(i < l1 && i < l2) {
t = num1[i] + num2[i] - * '' + c;
}
else if(i < l1 && i >= l2) {
t = num1[i] - '' + c;
}
else if(i >= l1 && i < l2) {
t = num2[i] - '' + c;
}
else {
break;
}
num3.append(, t % + '');
c = t / ;
}
while (c)
{
num3.append(,c%+'');
c /= ;
}
} int main() {
int m;
string str;
while(cin >> m >> str) {
//加法从低位到高位相加,那么需要将字符串倒过来
reverse(str.begin(), str.end());
int n = str.length();
for(int i = ; i < n; i++) {
num[i + ][i + ] = str.substr(i, );
}
for(int i = ; i <= n; i++) {
for(int j = i + ; j <= n; j++) {
num[i][j] = str.substr(i - , j - i + );
}
} for(int i = ; i <= n; i++) {//加号数目为0的时候
ret[][i] = num[][i];
}
for(int i = ; i <= m; i++) {
for(int j = ; j <= n; j++) {
string minv = maxv;
string temp;
for(int k = i; k <= j - ; k++){//ret[m][n] = min(ret[m-1][i] + num[i+1][n]);
temp.clear();
add(ret[i - ][k], num[k + ][j], temp);
if(cmp(temp, minv) < ) {
minv = temp;
}
}
ret[i][j] = minv;
}
}
reverse(ret[m][n].begin(), ret[m][n].end());
cout << ret[m][n] << endl;
}
return ;
}

参考链接 https://blog.csdn.net/qq_35049196/article/details/58247829

【动态规划】最佳加法表达式(百练oj4152)的更多相关文章

  1. 【OpenJ_Bailian - 4152 】最佳加法表达式(动态规划)

    最佳加法表达式 Descriptions: 给定n个1到9的数字,要求在数字之间摆放m个加号(加号两边必须有数字),使得所得到的加法表达式的值最小,并输出该值.例如,在1234中摆放1个加号,最好的摆 ...

  2. dp 动规 最佳加法表达式

    最佳加法表达式 有一个由1..9组成的数字串.问如果将m个加号插入到这个数字串中,在各种可能形成的表达式中,值最小的那个表达式的值是多少 解题思路 假定数字串长度是n,添完加号后,表达式的最后一个加号 ...

  3. 百练4152:最佳加法表达式(dp+高精度)

    描述 给定n个1到9的数字,要求在数字之间摆放m个加号(加号两边必须有数字),使得所得到的加法表达式的值最小,并输出该值.例如,在1234中摆放1个加号,最好的摆法就是12+34,和为36 输入有不超 ...

  4. OpenJudge 4152 最佳加法表达式

    总时间限制: 1000ms 内存限制: 65536kB 描述 给定n个1到9的数字,要求在数字之间摆放m个加号(加号两边必须有数字),使得所得到的加法表达式的值最小,并输出该值.例如,在1234中摆放 ...

  5. 递推,动态规划(DP),字符串处理,最佳加法表达式

    看了一些资料,竟然发现连百度文库也有错误的地方,在这里吐槽一下题目大意:http://wenku.baidu.com/link?url=DrUNNm19IqpPNZjKPX4Jg6shJiK_Nho6 ...

  6. 最佳加法表达式(dp)

    题目描述: 有一个由1..9组成的数字串.问如果将m个加 号插入到这个数字串中,在各种可能形成的 表达式中,值最小的那个表达式的值是多少 (本题只能用于整数) 解题思路: 假定数字串长度是n,添完加号 ...

  7. OpenJ_Bailian - 4152 最佳加法表达式 dp

    http://bailian.openjudge.cn/practice/4152?lang=en_US 题解 :dp[i][j]代表前i个字符加j个加号可以得到的最小值,于是dp[i+k[j+1]可 ...

  8. ACM/ICPC 之 递归(POJ2663-完全覆盖+POJ1057(百练2775)-旧式文件结构图)

    POJ2663-完全覆盖 题解见首注释 //简单递推-三个米诺牌(3*2)为一个单位打草稿得出规律 //题意-3*n块方格能被1*2的米诺牌以多少种情况完全覆盖 //Memory 132K Time: ...

  9. 百练6255-单词反转-2016正式B题

    百练 / 2016计算机学科夏令营上机考试 已经结束 题目 排名 状态 统计 提问   B:单词翻转 查看 提交 统计 提问 总时间限制:  1000ms 内存限制:  65536kB 描述 输入一个 ...

随机推荐

  1. 基于Noisy Channel Model和Viterbi算法的词性标注问题

    给定一个英文语料库,里面有很多句子,已经做好了分词,/前面的是词,后面的表示该词的词性并且每句话由句号分隔,如下图所示 对于一个句子S,句子中每个词语\(w_i\)标注了对应的词性\(z_i\).现在 ...

  2. 基于JS正则实现模板数据动态渲染

    最近业务上需要动态渲染模板数据: 一.业务需求: 1.前端后端定义好模板以及变量名,根据打印机类型转换成对应sdk需要的标签模板,保存数据库 2.订单数据是前端根据支付结果获取的,最终渲染完的数据模板 ...

  3. FCC 成都社区·前端周刊 第 4 期

    01. Angular, React or Vue? 如何为下一个 Web 应用程序选择合适的JavaScript 框架?Progress 的新白皮书提供了对 Angular.React 和 Vue ...

  4. .NET Core 3.x之下的配置框架

    一.配置框架的核心类库 首先我们使用.NET Core的配置框架需要安装额外的NuGet扩展包,下面是列举最常用的几个扩展包以及所对应的配置功能 NuGet Package Description M ...

  5. Ansible-1 基本认识及清单与模块

    ansible 一.常用的自动化运维工具 1.puppet 基于ruby开发,采用c/s架构,扩展性强,基于ssl,远程命令执行相对较弱, 2.saltstack 基于python开发,采用C/S架构 ...

  6. 项目中 关于localstorage、cookie的坑?明明设置了本地存储为什么没生效

    1.简单的介绍一下localStorage,sessionStorage,cookie localStorage:仅在客户端存储不参与服务器通信,存储大小一般为5M,如果不是人为清除,那么即使是关闭浏 ...

  7. 面向对象里is-a和has-a的含义

    面向对象的核心思想是:抽象.封装.继承.多态.在实践中用的最多的术语就是 is a(是一个) ,和 has a(有一个).其实他们的意思很简单,对应面向对象设计中的两种形态继承.组合. 一.继承( i ...

  8. Java-字节输入输出。(新手)

    参考手册: BufferedInputStream BufferedOutputStream 实例: import java.io.*; /* * 文件的复制方式 * 1 字节流读写单个字节 * 2 ...

  9. Elasticsearch 之聚合分析入门

    本文主要介绍 Elasticsearch 的聚合功能,介绍什么是 Bucket 和 Metric 聚合,以及如何实现嵌套的聚合. 首先来看下聚合(Aggregation): 什么是 Aggregati ...

  10. VMware虚拟机安装Mac OS X 10.12

    VMware Workstation Pro 14 安装Mac OS X 10.12 下面是所需要的补丁工具及镜像 VMware Workstation unlocker-master(OS X 虚拟 ...