【翻到文末, 还能让你看尽CV和NLP完整技术路径以及前沿+经典论文篇目,助你构建深度学习知识框架】

今年8月!PyTorch 1.2.0 版本来啦!!

据我们了解,在学术领域,特别是CV/NLP方向,有90%的人都在使用PyTorch,最新PyTorch 1.2.0版本的发布,使每项工具都进行了新的优化与改进,兼容性更强,使用起来也更加便捷!

通过使用 PyTorch 1.2.0 开源 ML 框架在生产应用方面向前迈出了一大步,并增加了一个改进的、更加完善的 TorchScript 环境。这些改进使得用户可以更容易建立生产模型,扩展对导出 ONNX 格式模型的支持功能,并增强对 Transformers 模块的支持。

这么多人都在学 PyTorch,而且还备受好评,其实都来自于它独特的魅力~

1)上手快:PyTorch代码更简洁易读,实现时间短,只要了解它和机器学习的基础概念,就可以上手使用

2)易调试:由于PyTorch采用动态图机制,使得调试它就像调试Python一样简单

3)资源多:非常干净、统一,文档化非常好,也没有大量重复的函数,目前arXiv中最新的算法大多都用PyTorch实现,可以迅速的复现最新最优的算法

4)PyTorch不仅对初学者十分友好,对于研究人员以及工程师也是十分推荐学习使用,能对小规模项目等快速搞出原型。

5)因为最新算法大多用PyTorch实现,工程师们可以快速获得SOTA,同时它还拥有广泛的群众基础(github贡献者超1100位),出现问题可以发挥群众的力量去解决。

我们了解到,市面上大多数学习PyTorch的主要内容是各种模型的介绍和实现,对PyTorch本身讲解过少,经常有学习过的小伙伴向我吐槽,他们运用PyTorch出现的一些难点:

1.查资料耗时间,效率低

2.思路不清晰、不理解函数、参数太多

3.框架重难点不易理解、不太懂参数用法

4.底层原理了解不透,不实践就容易忘记,实操能力差

5.不能灵活调用api,耗费大量时间,精力

相信大家在学习的过程中,也遇到了以上问题,弱弱的问一句,你身中几刀?

为了提高学习效率,便于更好的熟练运用框架,我们精心准备了一场基于最新发布的PyTorch 1.2.0 版本的

PyTorch框架班训练营

基于实战讲解PyTorch基本概念,然后依模型训练过程所涉及到的五大模块进行学习(数据、模型、损失函数、优化器、迭代训练可视化)从环境搭建到项目实战,0基础让你熟练掌PyTorch!

加入训练营,你将获得
0

1

全套系统视频讲解课

针对在运用框架时同学们不懂的问题,我们给大家提供了全套的系统视频讲解课,让你彻底搞懂框架内的每一个原理

0

2

配套代码视频讲解+代码作业

我们在每节课均设计合理的代码作业,让你们从作业中理解以及加深所学知识,并在整个教学设计上,提供配套代码视频讲解,通过理论与代码实践相结合,让你们学习更轻松,可以边学边用

课程大纲

【第一周】视频课

1. PyTorch简介

2. 环境配置

2.1 Pycharm

2.2 anaconda

2.3 安装PyTorch

2.4 测试

3. PyTorch的数据结构——Tensor和Variable

4. PyTorch的自动微分——autograd

5. PyTorch的nn模块——逻辑回归

作业:Tensor操作;实现自动微分;采用nn实现逻辑回归分类器

【第二周】视频课

1. DataSet与DataLoader

2. 让PyTorch读取自己的数据

3. 数据预处理及从硬盘到模型

4. 数据增强的二十二种模块

作业构建DataSet读取自己的数据;实现数据增强;

【第三周】视频课

1. 模型搭建要素及sequential

2. 常用网络层介绍及使用

3. 模型参数初始化方法——十种

4. 卷积神经网络Lenet-5搭建及训练

作业:采用sequential和非sequenial构建Lenet-5进行图像分类;采用不同初始化方法对Lenet-5参数初始化;

【第四周】视频课

1. 特殊的Module——Function

2. 损失函数讲解——十七种

3. 优化器讲解——十种

4. 学习率调整策略——六种

作业手算并对比PyTorch损失函数;构建一个优化器并打印其属性;实现学习率调整策略并打印学习率变化;

【第五周】视频课

1.  TensorBoard介绍

2.  Loss及Accuracy可视化

3.  卷积核及特征图可视化

4.  梯度及权值分布可视化

5.  混淆矩阵及其可视化

6.  类激活图可视化(Grad-CAM)

作业采用Tensorborad对Lenet-5的loss、accuracy和混淆矩阵进行可视化;对AlexNet的卷积核及特征图可视化;采用Grad-CAM对Lenet-5进行类激活图可视化

第六周】视频课

1. 过拟合正则化

2. L1和L2正则项

3. Dropout

4. Batch Normalization

5. module.eval()对dropout及BN的影响

作业采用L1和L2对逻辑回归进行正则化,并采用TensorBoard对权值分布进行对比;对Lenet-5采用dropout及BN,并理解module.eval()原理

【第七周】视频课

1. 迁移学习之——模型Finetune

2. 模型保存与加载

3. Early Stop

4. GPU使用——调用、选择、模型保存与加载

作业采用10分类模型进行2分类Finetune; GPU模型训练与加载

【第八周】视频课

1.   图像分类实战——ResNet18

2.   图像分割实战——Unet

3.   图像目标检测实战——YOLOV3

4.   图像生成对抗网络实战——GAN

5.   递归神经网络实战——RNN/LSTM

项目:采用自己的数据实现上述5种模型

有好的课程教材,也必须要有好的导师,才能让学习能力倍速提升,为此,我们请到了《PyTorch 模型训练最新实用教程》原书作者以及备受学员喜爱的资深导师团带学!

        领衔导师:

余老师

某互联网公司CV算法工程师

著有电子书《PyTorch 模型训练最新实用教程》

在深度学习学习者和研究者中广为传播,并被

“机器之心”等一线AI媒体转载或报道

除此以外,还能获得
1
三维度答疑

维度1:赠送价值1198元为期一年1对1导师咨询服务,12小时之内保证解决问题

维度2:每月统一收集问题直播答疑,系统讲解重难点

维度3:微信群助教及时互动,群友互答

2
超过15家知名互联网企业的工作内推

3
良好的学习氛围

各大985、211名校学生都选择加入我们的训练营一起学习,不乏哈佛、麻省、清华、北大、中科院本科生研究生,华为、阿里、滴滴的工程师

△可上下滑动,查看往期学员互动详情

4
提供GPU资源

通过深度之眼你可以获得便宜且类型多样的GPU。

这里的GPU来自于全球各地,通过DBC分布式网络连接在一起,没有中心化服务器,你的数据都是加密传输的,不会被窃取,非常安全!而且价格便宜,低至1小时不到1块钱!凡深度之眼学员均可免费领取2400DBC!48小时额度!

现在加入,仅需98元

省下两张电影票,8周就能熟练运用PyTorch框架

和一群志同道合的朋友!你还在等什么?

报名时间:2019年9月20日—2019年10月8日过时无法参与)

学习周期:2019年10月8日 —2019年12月1日

如果你还在犹豫,来看看我们是怎样为大家服务的吧!

对于优秀作业我们将置顶,助教将进行点评和批改

△可上下滑动,查看往期学员部分打卡详情

看到同学们这么认真的在做学习笔记,也是满满的成就感

睁开眼,阳光和你都在

△可上下滑动,查看往期学员部分作业完成详情

学员给我们的好评

我们的模式在往期训练营里备受好评!

而我们,还在不断的更新迭代

睁开眼,阳光和你都在~

△可上下滑动,查看往期训练营学员部分评价详情

学员福利

为了鼓励学员,我们一直坚持对于优秀的学生发放奖金

按学习任务要求完成全勤打卡,我们将赠送你如下福利!训练营采取的积分机制,打卡、点评、点赞都会有得到相应的积分,凭积分就可以换取相应奖品!

事实证明,往期训练营结束后,每一期坚持打卡的人,都拿回了报名时他所付的金额

我们的学员凡是参与过一期的人,都不断的在参与我们其他的训练营课程,他们说“太值了”!你却还在观望?

不参与竞争,就只能等待淘汰你不参与,别人会参与。

现在加入,仅需98元

-长按以下二维码速速报名-

报名时间:2019年9月20日—2019年10月8日(过时无法参与)

学习周期:2019年10月8日 —2019年12月1日

添加班主任微信进学员内部群

开启你的升级之旅

重磅推出深度之眼VIP

一年畅学18大主题训练营,从小白入门到进阶大神的最佳学习方式

订阅须知

Q、课程资料在哪里看?

A、所有的课程资料均会在深度之眼公众号内上传。

Q、报名后可以退款吗?

A、本服务为虚拟内容产品,一经购买,概不退款,敬请谅解。

Q、可以开具发票吗?

A、可以开具普通电子发票,请联系微信班主任填写需要的信息即可。

名企合作

截止目前,我们已经和多家国内知名在线教育平台和比赛机构建立了合作关系,只为给大家提供最优质的学习服务:


讲师招募!!

深度之眼首创训练营模式,在不到两年时间已有1.8万名付费学员,我们长期招募兼职讲师,以在线工作为主,分成收入佳。

只要您在以下方面有某一专长:

1、对数据分析、数据挖掘方向有擅长,可带数据科学相关班

2、有多年Python开发经验,对web/爬虫/运维/数据分析/云计算/大数据其中一个领域熟悉,可申请做Python课程导师

3、精读过《深度学习》花书、李航《统计学习方法》、《机器学习》西瓜书、等AI类知名书籍,可以开设以此书籍为教材的带读班

4、系统学过李宏毅的《机器学习》《深度学习》、李飞飞《计算机视觉课》、或是国外名校的知名公开课,可以开设以此课程为教材的带学班

5、打过Kaggle、天池、AI challenger、科赛网、DC等竞赛,并取得过前5的成绩,可带竞赛班

6、如果你自己曾经读过AI类的经典或者前沿论文,并且对论文做过深入的分析和研究,可作为我们的paper精读班老师

7、如果你在企业里面,有参加过实际的企业项目,可以作为我们AI企业项目实战班

我们不需要你全能,只要你在某一个方面特别擅长,即可担任我们的带学导师

(了解薪资报酬,可以进入【深度之眼】公众号回复关键词【讲师】)

招募分享达人

如果你热爱分享技术、学习经验、心得、我们为你搭建平台,帮你打造个人影响力!

欢迎大家扫客服微信联系我们!

同时欢迎HR联系我们探讨内推、实习等合作!


戳“阅读原文”查看其它训练营吧!

PyTorch1.2.0版本来啦!居然还有全套视频!让你快速熟练掌握深度学习框架!的更多相关文章

  1. PHP1.0版本上传OSS报错,仿照2.0版本传入的居然是句柄

    代码如下:          $oss_sdk_service = new ALIOSS();              $oss_sdk_service->set_debug_mode(FAL ...

  2. Jeecg-Boot 2.0 版本发布,基于Springboot+Vue 前后端分离快速开发平台

    目录 Jeecg-Boot项目简介 源码下载 升级日志 Issues解决 v1.1升级到v2.0不兼容地方 系统截图 Jeecg-Boot项目简介 Jeecg-boot 是一款基于代码生成器的智能开发 ...

  3. 国产深度学习框架mindspore-1.3.0 gpu版本无法进行源码编译

    官网地址: https://www.mindspore.cn/install 所有依赖环境 进行sudo make install 安装,最终报错: 错误记录信息: cat     /tmp/mind ...

  4. 微软的深度学习框架cntk ,我目前见过 安装方式最简单的一个框架,2.0之后开始支持C# 咯

    wiki:https://github.com/Microsoft/CNTK/wiki 嗨,你也是我这种手残党么?之前试着安装着mxnet和tensorflow,但是因为时间比较短所以往往来不及安装完 ...

  5. 深度学习环境搭建:window10+CUDA10.0+CUDNN+pytorch1.2.0

    去年底入手一台联想Y7000P,配置了Nvidia GeForce GTX 1660 Ti GPU,GPU内存6G,但是因为有GPU服务器,所以一直没有在这台笔记本上跑过模型,如今经过一番折腾,终于在 ...

  6. (转)基于FFPMEG2.0版本的ffplay代码分析

    ref:http://zzhhui.blog.sohu.com/304810230.html 背景说明 FFmpeg是一个开源,免费,跨平台的视频和音频流方案,它提供了一套完整的录制.转换以及流化音视 ...

  7. 深度学习主机环境配置: Ubuntu16.04 + GeForce GTX 1070 + CUDA8.0 + cuDNN5.1 + TensorFlow

    深度学习主机环境配置: Ubuntu16.04 + GeForce GTX 1070 + CUDA8.0 + cuDNN5.1 + TensorFlow 最近在公司做深度学习相关的学习和实验,原来一直 ...

  8. 深度学习环境搭建(CUDA9.0 + cudnn-9.0-linux-x64-v7 + tensorflow_gpu-1.8.0 + keras)

    关于计算机的硬件配置说明 推荐配置 如果您是高校学生或者高级研究人员,并且实验室或者个人资金充沛,建议您采用如下配置: 主板:X299型号或Z270型号 CPU: i7-6950X或i7-7700K ...

  9. hadoop源码编译——2.5.0版本

    强迫症必治: WARN util.NativeCodeLoader: Unable to load native-hadoop library for your platform... using b ...

随机推荐

  1. Scheme实现数字电路仿真(3)——模块

    版权申明:本文为博主窗户(Colin Cai)原创,欢迎转帖.如要转贴,必须注明原文网址 http://www.cnblogs.com/Colin-Cai/p/12242650.html 作者:窗户 ...

  2. C++走向远洋——37(工资类,2)

    */ * Copyright (c) 2016,烟台大学计算机与控制工程学院 * All rights reserved. * 文件名:salarly.cpp * 作者:常轩 * 微信公众号:Worl ...

  3. python爬虫-纠正MD5错误认知

    m = md5(".encode()) print(m.hexdigest()) # 25d55ad283aa400af464c76d713c07ad m = md5(".enco ...

  4. Java设计模式二

    今天谈的是工厂模式,该模式用于封装和对对象的创建,万物皆对象,那么万物又是产品类,如一个水果厂生产三种水果罐头,我们就可以将这三种水果作为产品类,再定义一个接口用来设定对水果罐头的生成方法,在工厂类中 ...

  5. css中grid属性的使用

    grid布局 加在父元素上的属性 grid-template-columns/grid-template-rows 定义元素的行或列的宽高 如果父元素被等分成了9等分,则,不管有多少个子元素,都显示9 ...

  6. springmvc 的@ResponseBody 如何使用JSONP?

    JSONP解释 在解释JSONP之前,我们需要了解下”同源策略“这个概念,这对理解跨域有帮助.基于安全的原因,浏览器是存在同源策略机制的,同源策略阻止从一个源加载的文档或脚本获取或设置另一个源加载额文 ...

  7. Java easyui 下拉框默认选中第一个

    html代码: <tr> <td> <div style="margin-bottom:5px">计价方式:   <%--下拉框默认选中第 ...

  8. ubuntu 安装flask+nginx+gunicorn 待定

    第一步 先检查服务器环境   pip python3 mysql redis 能下就下,该升级就升级 第二步 如果你的flask程序在github上 请使用git clone 地址 下载下来(如果是私 ...

  9. 基于Linux Lite 4.8制作“Windows 12 Lite”正式发布

    值得注意的是,这款Windows 12 Lite的宣传标语将矛头直指Windows 10,声称不会迫使用户更新.不会存在病毒或恶意软件.启动速度比Win 10快3倍.提供8万多款优质软件.允许与Win ...

  10. Python装饰器及内置函数

    装饰器 听名字应该知道这是一个装饰的东西,我们今天就来讲解一下装饰器,有的铁子们应该听说,有的没有听说过.没有关系我告诉你们这是一个很神奇的东西 这个有多神奇呢? 我们先来复习一下闭包 def fun ...