github上面的一个项目,分为level1,level2,level3 三个等级的难度。

题目地址

一部分中文翻译

python教程

剑指offer,python3实现

python进阶

练习题1:

随机生成一列数据,画出这些数据的分布、概率密度曲线,以及进行归一化、标准化之后的分布、概率密度曲线。

解答:

# 归一化、标准化、中心化
import numpy as np
import matplotlib.pyplot as plt
import seaborn as sns

original_data = np.random.exponential(size = 1000)
scaled_data = (original_data - original_data.min())/(original_data.max()-original_data.min())
fig,ax = plt.subplots(1,2)
sns.distplot(original_data,ax=ax[0])    #直方图
ax[0].set_title("Original Data")
sns.distplot(scaled_data,ax = ax[1])
ax[1].set_title('Scaled Data')
plt.show()

original_data = 6*np.random.rand(1000)+7
scaled_data = (original_data - original_data.mean())/original_data.std()
fig,ax = plt.subplots(1,2)
sns.distplot(original_data,ax=ax[0])
ax[0].set_title("Original Data")
sns.distplot(scaled_data,ax = ax[1])
ax[1].set_title('Scaled Data')
plt.show()

随机抽样函数

练习题2:

一个数据集 身高:1.7,1.8,1.9

体重:70,80,90,分别进行归一化、标准化,看数据值及其分布图。

练习题3:

同题1,自动生成二维分布数据集,画图展示。进行归一化、标准化后,画图展示。

解答:

x = np.array([1.7,1.8,1.9,1.75,1.85])
y = np.array([60,70,80,85,65])
plt.scatter(x,y)
plt.show()

x_scaled = preprocessing.scale(x)
y_scaled = preprocessing.scale(y)
plt.scatter(x_scaled,y_scaled)
plt.show()

x_normalize = (x-x.min())/(x.max()-x.min())
y_normalize = (y-y.min())/(y.max()-y.min())
plt.scatter(x_normalize,y_normalize)
plt.show()

python编程练习题目的更多相关文章

  1. 详解Python编程中基本的数学计算使用

    详解Python编程中基本的数学计算使用 在Python中,对数的规定比较简单,基本在小学数学水平即可理解. 那么,做为零基础学习这,也就从计算小学数学题目开始吧.因为从这里开始,数学的基础知识列位肯 ...

  2. 百道Python面试题实现,搞定Python编程就靠它

    对于一般的机器学习求职者而言,最基础的就是掌握 Python 编程技巧,随后才是相关算法或知识点的掌握.在这篇文章中,我们将介绍一个 Python 练习题项目,它从算法练习题到机试实战题提供了众多问题 ...

  3. 记一次面试过程中的Python编程题

    这几天面试过程中遇到一道Python编程题,题目如下: 面试中遇到一个Python编程问题:一个字符串,将里面的数字取出来,如果第一个数字前面是+,表示整个数字为正数,如果第一个数字前面是-,表示数字 ...

  4. Python黑帽编程2.1 Python编程哲学

    Python黑帽编程2.1  Python编程哲学 本节的内容有些趣味性,涉及到很多人为什么会选择Python,为什么会喜欢这门语言.我带大家膜拜下Python作者的Python之禅,然后再来了解下P ...

  5. Linux运维人员如何学习python编程

    Linux运维人员如何学习python编程 从不会写代码,到自己独立能写代码解决问题 .这个问题很重要!盲目学习所谓的项目,最后 还是不会自己写代码解决问题.首先解决了独立能写代码解决问题,再通过项目 ...

  6. Python编程核心之makeTextFile.py和readTextFile.py

    引言: 最近大半年都在学习python编程,在双十一的时候购买了<Python编程核心>,看到makeTextFile.py和readTextFile.py两个例子有点错误,所以在这里给修 ...

  7. Python编程规范(PEP8)

    Python编程规范(PEP8) 代码布局 缩进 对于每一次缩进使用4个空格.使用括号.中括号.大括号进行垂直对齐,或者缩进对齐. 制表符还是空格? 永远不要将制表符与空格混合使用.Python最常用 ...

  8. Python 编程规范-----转载

    Python编程规范及性能优化 Ptyhon编程规范 编码 所有的 Python 脚本文件都应在文件头标上 # -*- coding:utf-8 -*- .设置编辑器,默认保存为 utf-8 格式. ...

  9. 学习Python编程的11个资源

    用 Python 写代码并不难,事实上,它一直以来都是被声称为最容易学习的编程语言.如果你正打算学习 web 开发,Python 是一个不错的选择,甚至你想学游戏开发也可 以从 Python 开始,因 ...

随机推荐

  1. error LNK2005: "void * __cdecl operator new(unsigned int)" (??2@YAPAXI@Z) already defined in LIBCMT

    项目--属性 ---连接器---命令行 输入: /FORCE:MULTIPLE 编译环境:VS2012SP3

  2. Ubuntu16.04 faster-rcnn+caffe+gpu运行环境配置以及解决各种bug

    https://blog.csdn.net/flygeda/article/details/78638824 本文主要是对近期参考的网上各位大神的博客的总结,其中,从安装系统到跑通程序过程中遇到的各种 ...

  3. 监听配置问题,SID与Service_Name区别

    监听配置问题,SID与Service_Name区别 1.数据库实例名SID 概念:数据库实例名用于和操作系统进行联系的标识,是数据库和操作系统之间的交互用的书数据库实例名.实例名也被写入参数文件中,该 ...

  4. Linux--Centos7开机启动 mysql5.7.19

    参考:http://www.cnblogs.com/Anker/p/3551508.html

  5. JavaScript—面向对象贪吃蛇_1

    前面说了.面向对象的思考方式和面向过程的思考方式有着本质的区别. 贪吃蛇.作为各大培训机构.面向对象的练手项目,的确好.我昨天看完视频,有一种领悟面向对象的感觉,当然可能只针对贪吃蛇..要想在实际开发 ...

  6. 洛谷 P1341 无序字母对(欧拉回路)

    题目传送门 解题思路: 一道欧拉回路的模板题,详细定理见大佬博客,任意门 AC代码: #include<cstdio> #include<iostream> using nam ...

  7. 题解【[HAOI2006]受欢迎的牛】

    切水题,写题解~ tarjan缩一波点,然后 只有一个出度为0的点:他的size就是答案 有多个初度为0的点:无解,0个 因为是强联通分量,所以肯定有出度为0的点,否则--就是你tarjan写挂了~ ...

  8. zip4j 2.0压缩 加密压缩

    https://github.com/srikanth-lingala/zip4j ZipParameters zipParameters = new ZipParameters(); zipPara ...

  9. Python说文解字_计数器

    from collections import Counter response = [ "vanilla", "chocolate", "vanil ...

  10. CMake常用变量

    CMake变量 CMake共用七种变量,如下所示: 目录: ()提供信息的变量. ()控制变量. ()描述系统的变量. ()控制构建过程的变量. ()语言变量. ()CTest变量. (7)CPack ...