Java面试必问之Hashmap底层实现原理(JDK1.7)
1. 前言
Hashmap可以说是Java面试必问的,一般的面试题会问:
- Hashmap有哪些特性?
- Hashmap底层实现原理(get\put\resize)
- Hashmap怎么解决hash冲突?
- Hashmap是线程安全的吗?
- ...
今天就从源码角度一探究竟。笔者的源码是OpenJDK1.7
2. 构造方法
首先看构造方法的源码
// 默认初始容量
static final int DEFAULT_INITIAL_CAPACITY = 16;
// 默认负载因子
static final float DEFAULT_LOAD_FACTOR = 0.75f;
// 数组, 该数据不参与序列化
transient Entry[] table;
public HashMap() {
this.loadFactor = DEFAULT_LOAD_FACTOR;
// 初始容量16,扩容因子0.75,扩容临界值12
threshold = (int)(DEFAULT_INITIAL_CAPACITY * DEFAULT_LOAD_FACTOR);
// 基础结构为Entry数组
table = new Entry[DEFAULT_INITIAL_CAPACITY];
init();
}
由以上源码可知,Hashmap的初始容量默认是16, 底层存储结构是数组(到这里只能看出是数组, 其实还有链表,下边看源码解释)。基本存储单元是Entry,那Entry是什么呢?我们接着看Entry相关源码,
static class Entry<K,V> implements Map.Entry<K,V> {
final K key;
V value;
Entry<K,V> next; // 链表后置节点
final int hash;
/**
* Creates new entry.
*/
Entry(int h, K k, V v, Entry<K,V> n) {
value = v;
next = n; // 头插法: newEntry.next=e
key = k;
hash = h;
}
...
}
由Entry源码可知,Entry是链表结构。综上所述,可以得出:
Hashmap底层是基于数组和链表实现的
3. Hashmap中put()过程
我已经将put过程绘制了流程图帮助大家理解
先上put源码
public V put(K key, V value) {
if (key == null)
return putForNullKey(value);
// 根据key计算hash
int hash = hash(key.hashCode());
// 计算元素在数组中的位置
int i = indexFor(hash, table.length);
// 遍历链表,如果相同覆盖
for (Entry<K,V> e = table[i]; e != null; e = e.next) {
Object k;
if (e.hash == hash && ((k = e.key) == key || key.equals(k))) {
V oldValue = e.value;
e.value = value;
e.recordAccess(this);
return oldValue;
}
}
modCount++;
// 头插法插入元素
addEntry(hash, key, value, i);
return null;
}
上图中多次提到头插法,啥是 头插法
呢?接下来看 addEntry
方法
void addEntry(int hash, K key, V value, int bucketIndex) {
// 取出原bucket链表
Entry<K,V> e = table[bucketIndex];
// 头插法
table[bucketIndex] = new Entry<>(hash, key, value, e);
// 判断是否需要扩容
if (size++ >= threshold)
// 扩容好容量为原来的2倍
resize(2 * table.length);
}
结合Entry类的构造方法,每次插入新元素的时候,将bucket原链表取出,新元素的next指向原链表,这就是 头插法
。为了更加清晰的表示Hashmap存储结构,再绘制一张存储结构图。
4. Hashmap中get()过程
get()逻辑相对比较简单,如图所示
我们来对应下get()源码
public V get(Object key) {
// 获取key为null的值
if (key == null)
return getForNullKey();
// 根据key获取hash
int hash = hash(key.hashCode());
// 遍历链表,直到找到元素
for (Entry<K,V> e = table[indexFor(hash, table.length)];
e != null;
e = e.next) {
Object k;
if (e.hash == hash && ((k = e.key) == key || key.equals(k)))
return e.value;
}
return null;
}
5. Hashmap中resize()过程
只要是新插入元素,即执行addEntry()方法,在插入完成后,都会判断是否需要扩容。从addEntry()方法可知,扩容后的容量为原来的2倍。
void resize(int newCapacity) {
Entry[] oldTable = table;
int oldCapacity = oldTable.length;
if (oldCapacity == MAXIMUM_CAPACITY) {
threshold = Integer.MAX_VALUE;
return;
}
// 新建数组
Entry[] newTable = new Entry[newCapacity];
// 数据迁移
transfer(newTable);
// table指向新的数组
table = newTable;
// 新的扩容临界值
threshold = (int)(newCapacity * loadFactor);
}
这里有个transfer()方法没讲,别着急,扩容时线程安全的问题出现在这个方法中,接下来讲解数组复制过程。
6. Hashmap扩容安全问题
大家都知道结果: 多线程扩容有可能会形成环形链表,这里用图给大家模拟下扩容过程。
首先看下单线程扩容的头插法
然后看下多线程可能会出现的问题
以下是源码,你仔细品一品
void transfer(Entry[] newTable) {
Entry[] src = table;
int newCapacity = newTable.length;
for (int j = 0; j < src.length; j++) {
Entry<K,V> e = src[j];
if (e != null) {
// 释放旧Entry数组的对象引用
src[j] = null;
do {
Entry<K,V> next = e.next;
// 重新根据新的数组长度计算位置(同一个bucket上元素hash相等,所以扩容后必然还在一个链表上)
int i = indexFor(e.hash, newCapacity);
// 头插法(同一位置上新元素总会被放在链表的头部位置),将newTable[i]的引用赋给了e.next
e.next = newTable[i];
// 将元素放在数组上
newTable[i] = e;
// 访问下一个元素
e = next;
} while (e != null);
}
}
}
7. Hashmap寻找bucket位置
static int indexFor(int h, int length) {
// 根据hash与数组长度mod运算
return h & (length-1);
}
由源码可知, jdk根据key的hash值和数组长度做mod运算,这里用位运算代替mod。
hash运算值是一个int整形值,在java中int占4个字节,32位,下边通过图示来说明位运算。
8. AD
如果您觉得还行,请关注公众号【当我遇上你】, 您的支持是我输出的最大动力。
同时,欢迎大家一起交流学习。
Java面试必问之Hashmap底层实现原理(JDK1.7)的更多相关文章
- Java面试必问之Hashmap底层实现原理(JDK1.8)
1. 前言 上一篇从源码方面了解了JDK1.7中Hashmap的实现原理,可以看到其源码相对还是比较简单的.本篇笔者和大家一起学习下JDK1.8下Hashmap的实现.JDK1.8中对Hashmap做 ...
- 面试必问:HashMap 底层实现原理
HashMap是在面试中经常会问的一点,很多时候我们仅仅只是知道HashMap他是允许键值对都是Null,并且是非线程安全的,如果在多线程的环境下使用,是很容易出现问题的. 这是我们通常在面试中会说的 ...
- Java面试必问通信框架NIO,原理详解
NIO 流与块 通道与缓冲区 缓冲区状态变量 文件 NIO 实例 选择器 套接字 NIO 实例 内存映射文件 NIO与IO对比 Path Files NIO 新的输入/输出 (NIO) 库是在 JDK ...
- 一线大厂Java面试必问的2大类Tomcat调优
一.前言 最近整理了 Tomcat 调优这块,基本上面试必问,于是就花了点时间去搜集一下 Tomcat 调优都调了些什么,先记录一下调优手段,更多详细的原理和实现以后用到时候再来补充记录,下面就来介绍 ...
- Java面试必问之线程池的创建使用、线程池的核心参数、线程池的底层工作原理
一.前言 大家在面试过程中,必不可少的问题是线程池,小编也是在面试中被问啥傻了,JUC就了解的不多.加上做系统时,很少遇到,自己也是一知半解,最近看了尚硅谷阳哥的课,恍然大悟,特写此文章记录一下!如果 ...
- 深入解读大厂java面试必考基本功-HashMap集合
课程简介 HashMap集合在企业开发中是必用的集合同时也是面试官面试率很高的集合,因为HashMap里面涉及了很多的知识点,可以比较全面考察面试者的基本功,想要拿到一个好offer,这是一个迈不过的 ...
- Java面试必问之-JUC
JUC:java.util.concurrent (Java并发编程工具类) 代码:D:\JAVA\Java_Learning\Elipse_Project\workspace200301EE\JUC ...
- 来看看面试必问的HashMap,一次彻底帮你搞定HashMap源码
HashMap结构 数组+链表+红黑树 链表大于8转红黑树,红黑树节点数小于6退回链表. 存放的key-value的Node节点 static class Node<K,V> implem ...
- 大厂面试必问!HashMap 怎样解决hash冲突?
HashMap冲突解决方法比较考验一个开发者解决问题的能力. 下文给出HashMap冲突的解决方法以及原理分析,无论是在面试问答或者实际使用中,应该都会有所帮助. 在Java编程语言中,最基本的结构就 ...
随机推荐
- ELK_疑难杂症处理
一.ELK实用知识点总结 1.编码转换问题 这个问题,主要就是中文乱码. input中的codec=>plain转码: codec => plain {charset => &quo ...
- 吴裕雄--天生自然 JAVA开发学习: 泛型
public class GenericMethodTest { // 泛型方法 printArray public static < E > void printArray( E[] i ...
- 谈谈有关 Python 的GIL 和 互斥锁
转载:https://blog.csdn.net/Amberdreams/article/details/81274217 有 Python 开发经验的人也许听说过这样一句话:Python 不能充分利 ...
- numpy矩阵运算--矩阵乘法
1)元素对应相乘,使用 multiply 函数或 * 运算符来实现 a = np.array([2,2,2])b = np.array([3,3,3]) c1 = a*a c1 array([4, 4 ...
- [LC] 7. Reverse Integer
Given a 32-bit signed integer, reverse digits of an integer. Example 1: Input: 123 Output: 321 Examp ...
- node.js 和 npm/cnpm/nrm 的安装
node.js 和 npm/cnpm/nrm 的安装 安装 node.js.去 官网 下载,下载 LTS 版本的.安装时一路点确定,不要改动任何设置. 在 git-bash 或是 cmd 下,输入 n ...
- 吴裕雄--天生自然python学习笔记:Python3 命名空间和作用域
命名空间(Namespace)是从名称到对象的映射,大部分的命名空间都是通过 Python 字典来实现的. 命名空间提供了在项目中避免名字冲突的一种方法.各个命名空间是独立的,没有任何关系的,所以一个 ...
- python3爬虫:利用urllib与有道翻译获得翻译结果
在实现这一功能时遇到了一些困难,由于按照<零基础入门python>中的代码无法实现翻译,会爆出“您的请求来源非法,商业用途使用请关注有道翻译API官方网站“有道智云”: http://ai ...
- python运算符和常用数据类型转换
运算符 算术运算符 运算符 描述 实例 + 加 两个对象相加 a + b 输出结果 30 - 减 得到负数或是一个数减去另一个数 a - b 输出结果 -10 * 乘 两个数相乘或是返回一个被重复若干 ...
- 很全很全的 JavaScript 模块讲解
模块通常是指编程语言所提供的代码组织机制,利用此机制可将程序拆解为独立且通用的代码单元.所谓模块化主要是解决代码分割.作用域隔离.模块之间的依赖管理以及发布到生产环境时的自动化打包与处理等多个方面. ...