A. Median Smoothing
time limit per test

2 seconds

memory limit per test

256 megabytes

input

standard input

output

standard output

A schoolboy named Vasya loves reading books on programming and mathematics. He has recently read an encyclopedia article that described the method of median smoothing (or median filter) and its
many applications in science and engineering. Vasya liked the idea of the method very much, and he decided to try it in practice.

Applying the simplest variant of median smoothing to the sequence of numbers a1, a2, ..., an will
result a new sequence b1, b2, ..., bnobtained
by the following algorithm:

  • b1 = a1, bn = an,
    that is, the first and the last number of the new sequence match the corresponding numbers of the original sequence.
  • For i = 2, ..., n - 1 value bi is
    equal to the median of three values ai - 1, ai and ai + 1.

The median of a set of three numbers is the number that goes on the second place, when these three numbers are written in the non-decreasing order. For example, the median of the set 5, 1, 2 is
number 2, and the median of set 1, 0, 1 is equal to 1.

In order to make the task easier, Vasya decided to apply the method to sequences consisting of zeros and ones only.

Having made the procedure once, Vasya looked at the resulting sequence and thought: what if I apply the algorithm to it once again, and then apply it to the next result, and so on? Vasya tried a couple of examples and found out that after some number of median
smoothing algorithm applications the sequence can stop changing. We say that the sequence is stable, if it does not change when the median smoothing is applied to it.

Now Vasya wonders, whether the sequence always eventually becomes stable. He asks you to write a program that, given a sequence of zeros and ones, will determine whether it ever becomes stable. Moreover, if it ever becomes stable, then you should determine
what will it look like and how many times one needs to apply the median smoothing algorithm to initial sequence in order to obtain a stable one.

Input

The first input line of the input contains a single integer n (3 ≤ n ≤ 500 000) —
the length of the initial sequence.

The next line contains n integers a1, a2, ..., an (ai = 0 or ai = 1),
giving the initial sequence itself.

Output

If the sequence will never become stable, print a single number  - 1.

Otherwise, first print a single integer — the minimum number of times one needs to apply the median smoothing algorithm to the initial sequence before it becomes is stable. In the second line print n numbers
separated by a space  — the resulting sequence itself.

Sample test(s)
input
4
0 0 1 1
output
0
0 0 1 1
input
5
0 1 0 1 0
output
2
0 0 0 0 0
Note

In the second sample the stabilization occurs in two steps: ,
and the sequence 00000 is obviously stable.

题意是给出了一段 0 1 组成的波,然后这个波的值可能会发生变化,排除起点与终点,如果某一位置上的值不等于其左右位置加上自己的中位数话,那么它会变成中位数,这样导致波会振荡一次,问波最终是否会稳定,不会输出-1。会,就输出其振荡次数与最终波的值。

首先可以判断最终波是一定会稳定的,不可能最终不稳定,因为只有0与1,边缘值a1与an不变了,所以他们只会往中间延伸这种稳定的状态,然后我做的方法是叠加,如果前者不稳定,那么后者的不稳定程度+1,其实这么做是不对的,波振荡的这一系列的值只可能是一个山峰形状的,如1 2 1 或者 1 2 2 1.但是因为都是 0 1组成所以不用管那么多,只需管每一位置振荡次数的奇偶即可。然后就是判断每一段振荡最终位置的值,奇数不用管了,1
2 3 4 5和1 2 3 2 1最终形成的效果是一样的。偶数需要调整,1 2 3 4要调整为 1 2 2 1这样的效果。

代码:

#include <iostream>
#include <algorithm>
#include <cmath>
#include <vector>
#include <string>
#include <cstring>
#pragma warning(disable:4996)
using namespace std; int n;
int a[5];
int val[500005];
int stable[500005]; int main()
{
//freopen("i.txt", "r", stdin);
//freopen("o.txt", "w", stdout); int i, k, maxn;
scanf("%d", &n); for (i = 0; i < n; i++)
scanf("%d", val + i); maxn = 0;
memset(stable, 0, sizeof(stable)); for (i = 1; i < n - 1; i++)
{
a[0] = val[i - 1];
a[1] = val[i];
a[2] = val[i + 1]; sort(a, a + 3); if (val[i] != a[1])
{
stable[i] = stable[i - 1] + 1;
maxn = max(maxn, stable[i]);
}
else
{
stable[i] = 0;
}
}
int flag = 0;
for (i = n - 2; i >= 1; i--)
{
if (stable[i] == 0)
{
flag = 0;
}
else
{
if (flag == 0 && stable[i])
{
flag = 1;
if (stable[i] % 2 == 0)
{
int temp = stable[i];
for (k = temp; k > temp / 2; k--)
{
stable[i]++;
i--;
}
i++;
}
}
}
} printf("%d\n", (maxn + 1) / 2);
for (i = 0; i < n; i++)
{
if (i == 0)
{
printf("%d", val[i]);
}
else
{
if (stable[i] & 1)
{
printf(" %d", (val[i] + 1) & 1);
}
else
{
printf(" %d", val[i]);
}
}
}
printf("\n");
//system("pause");
return 0;
}

版权声明:本文为博主原创文章,未经博主允许不得转载。

Codeforces 590 A:Median Smoothing的更多相关文章

  1. Codeforces Round #327 (Div. 2) C. Median Smoothing 找规律

    C. Median Smoothing Time Limit: 20 Sec Memory Limit: 256 MB 题目连接 http://codeforces.com/contest/591/p ...

  2. Codeforces Round #327 (Div. 2) B. Rebranding C. Median Smoothing

    B. Rebranding The name of one small but proud corporation consists of n lowercase English letters. T ...

  3. codeforces 590A A. Median Smoothing(思维)

    题目链接: A. Median Smoothing time limit per test 2 seconds memory limit per test 256 megabytes input st ...

  4. Codeforces Round #327 (Div. 2)C. Median Smoothing 构造

    C. Median Smoothing   A schoolboy named Vasya loves reading books on programming and mathematics. He ...

  5. 【22.70%】【codeforces 591C】 Median Smoothing

    time limit per test2 seconds memory limit per test256 megabytes inputstandard input outputstandard o ...

  6. cf590A Median Smoothing

    A. Median Smoothing time limit per test 2 seconds memory limit per test 256 megabytes input standard ...

  7. ACM学习历程—CodeForces 590A Median Smoothing(分类讨论 && 数学)

    题目链接:http://codeforces.com/problemset/problem/590/A 题目大意是给一个串,头和尾每次变换保持不变. 中间的a[i]变成a[i-1],a[i],a[i+ ...

  8. Codeforces Round #327 (Div. 1), problem: (A) Median Smoothing

    http://codeforces.com/problemset/problem/590/A: 在CF时没做出来,当时直接模拟,然后就超时喽. 题意是给你一个0 1串然后首位和末位固定不变,从第二项开 ...

  9. CodeForces - 1005E2:Median on Segments (General Case Edition) (函数的思想)

    You are given an integer sequence a1,a2,…,ana1,a2,…,an. Find the number of pairs of indices (l,r)(l, ...

随机推荐

  1. Binary Heap(二叉堆) - 堆排序

    这篇的主题主要是Heapsort(堆排序),下一篇ADT数据结构随笔再谈谈 - 优先队列(堆). 首先,我们先来了解一点与堆相关的东西.堆可以实现优先队列(Priority Queue),看到队列,我 ...

  2. struct和class定义类的区别

    (1)struct定义的类.struct定义的类,其方法和属性都是公有的(public).因此,外部可以直接访问其内部数据. (2)class定义的类.class定义的类,默认情况下是私有的(priv ...

  3. 集成PHP应用和SOLR

    集成 PHP 应用和 Solr 搜索引擎 您的评价:          收藏该经验       你为什么需要搜索引擎?单纯数据库不够用?如果你只是创建小网站,数据库就够了.但当你创建中性或大型应用的时 ...

  4. Kali 2020.1 默认密码不是toor

    官方2020年一月28日的文章中指出root/toor is dead. Long live kali/kali. 登录用户名和密码是kali:kali 但是虚拟机镜像下载页面没有及时更新,仍然提示登 ...

  5. 4 JavaScript异常&debugger&保留关键字

    try:语句测试代码块错误 catch:语句处理错误,一般提供一个对象如catch(err)用来存储错误信息 throw: 语句创建自定义错误,抛出的信息可以被catch捕获 JavaScript错误 ...

  6. 吴裕雄 Bootstrap 前端框架开发——Bootstrap 排版:设定文本对齐,段落中超出屏幕部分文字自动换行

    <!DOCTYPE html> <html> <head> <title>菜鸟教程(runoob.com)</title> <meta ...

  7. 【PAT甲级】1032 Sharing (25 分)

    题意: 输入两个单词的起始地址和一个正整数N(<=1e5),然后输入N行数据,每行包括一个五位数的字母地址,字母和下一个字母的地址.输出这两个单词的公共后缀首字母的地址,若无公共后缀则输出-1. ...

  8. JS - 处理浏览器兼容之 event

    function test(e){ var event = e || windows.event   //  IE : windows.event  ,非IE : e }

  9. H5新增的标签和属性

    声明 Web 世界中存在许多不同的文档.只有了解文档的类型,浏览器才能正确地显示文档. HTML 也有多个不同的版本,只有完全明白页面中使用的确切 HTML 版本,浏览器才能完全正确地显示出 HTML ...

  10. Centos7 设置自定义安装nginx的systemctl启动方式

    一.systemctl方式启动设置过程 1.首先创建服务配置文件(名字和路径就是这个) vim /usr/lib/systemd/system/nginx.service 2.添加配置内容 [Unit ...