初始神经网络

这里要解决的问题是,将手写数字的灰度图像(28 像素 x28 像素)划分到 10 个类别中(0~9)。我们将使用 MINST 数据集,它是机器学习领域的一个经典数据集,其历史几乎和这个领域一样长,而且已被人们深入研究。这个数据集包含 60000 张训练图像和 10000 张测试图像,由美国国家标准与技术研究院(National Institute of Standards and Technology,即 MINIST 中的 NIST)在 20 世纪 80 年代收集得到。你可以将“解决”MINIST 问题看作深度学习的“Belo World”,正是用它来验证你的算法是否按预期运行。当你成为机器学习从业者后,会发现 MINIST 一次又一次地出现在科学论文、博客文章等中。下图给出了 MINIST 数据集的一些样本。

MINST 数据集预先加载在 Keras 库中,其中包括 4 个 Numpy 数组。

(train_images,train_labels),(test_images,test_labels)=mnist.load_data()

下载完车给后是这样的

Downloading data from https://s3.amazonaws.com/img-datasets/mnist.npz

11493376/11490434 [==============================] - 0s 0us/step

Train_ Images 和 traln_1 abels 组成了训练集(training set),模型将从这些数据中进学习。然后在测试集(test set,即 test_ Images 和 test_ labels)上对模型进行测试。

图像被编码为 Numpy 数组,而标签是数字数组,取值范围为 0~9。图像和标签一一对应。我们来看一下训练数据:

[3] train images. Shape
(60000,2828 [5] 1 train labels. Shape
C (60000

接下来的工作流程如下:首先,将训练数据(traln_ Images 和 traln_1 abes)输人神经网络;其次,网络学习将图像和标签关联在一起;最后,网络对 test_ Images 生成预测而我们将验证这些预测与 test_1 abe1 s 中的标签是否匹配。

网络架构

from keras import models, layers
network = models.Sequential()
network.add(layers.Dense(512,activation='relu',input_shape=(28*28, )))
network.add(layers.Dense(10,activation='softmax'))

神经网络的核心组件是层(layer),它是一种数据处理模块,你可以将它看成数据过滤器。进去一些数据,出来的数据变得更加有用。具体来说,层从输入数据中提取表示一一我们期望这种表示有助于解决手头的问题。大多数深度学习都是将简单的层链接起来,从而实现渐进式的数据蒸馏(data distillation)。深度学习模型就像是数据处理的筛子,包含一系列越来越精细的数据过滤器(即层)

通过summary可以查看该网络结构已经参数

Model: "sequential_6"
_________________________________________________________________
Layer (type) Output Shape Param #
=================================================================
dense_4 (Dense) (None, 512) 401920
_________________________________________________________________
dense_5 (Dense) (None, 10) 5130
=================================================================
Total params: 407,050
Trainable params: 407,050
Non-trainable params: 0
_________________________________________________________________

本例中的网络包含 2 个 Dense 层,它们是密集连接(也叫全连接)的神经层。第二层(也是最后一层)是一个 10 路 softmax 层,它将返回一个由 10 个概率值(总和为 1) 组成的数组。每个概率值表示当前数字图像属于 10 个数字类别中某一个的概率。

要想训练网络,我们还需要选择编译(compile)步骤的三个参数。

  • 损失函数(loss function):网络如何衡量在训练数据上的性能,即网络如何朝着正确的方向前进。

  • 优化器(optimizer):基于训练数据和损失函数来更新网络的机制。

  • 在训练和测试过程中需要监控的指标(metric):本例只关心精度,即正确分类的图像所占的比例。

编译步骤

network.compile(optimizer='rmsprop',
loss='categorical_crossentropy',
metrics=['accuracy'])

在开始训练之前,我们将对数据进行预处理,将其变换为网络要求的形状,并缩放到所有值都在【0,11 区间。比如,之前训练图像保存在一个 uint8 类型的数组中,其形状为(60000,28,28),取值区间为【0,255]。我们需要将其変换为一个 f1 oat32 数组,其形状为(60000,28*28),取值范围为 0~1。

准备图像数据

train_images = train_images.reshape((60000,28*28))
train_images = train_images.astype('float32') / 225 test_images = test_images.reshape((10000,28*28))
test_images = test_images.astype('float32') / 225

准备标签

from keras.utils import to_categorical

train_labels = to_categorical(train_labels)
test_labels = to_categorical(test_labels)

现在我们准备开始训练网络,在 Keras 中这一步是通过调用网络的 fit 方法来完成的我们在训练数据上拟合(fit)模型。

.......
60000/60000 [=============] - 4s 67us/step - loss: 2.6875e-04 - acc: 1.0000
Epoch 100/100
60000/60000 [=============] - 4s 67us/step - loss: 2.6875e-04 - acc: 1.0000
<keras.callbacks.History at 0x7f5990492eb8>

训练过程中显示了两个数字:一个是网络在训练数据上的损失(1 oss),另一个是网络在训练数据上的精度(acc)

我们很快就在训练数据上达到了 1.0000 (100%)的精度。现在我们来检査一下模型在测试集上的性能。

test_loss, test_acc = network.evaluate(test_images,test_labels)

测试集精度为 98.38%,比训练集精度低不少。训练精度和测试精度之间的这种差距是过拟合(overfit)造成的。过拟合是指机器学习模型在新数据上的性能往往比在训练数据上要差.

代码链接:

利用mnist数据集进行深度神经网络的更多相关文章

  1. MNIST数据集上卷积神经网络的简单实现(使用PyTorch)

    设计的CNN模型包括一个输入层,输入的是MNIST数据集中28*28*1的灰度图 两个卷积层, 第一层卷积层使用6个3*3的kernel进行filter,步长为1,填充1.这样得到的尺寸是(28+1* ...

  2. 从零到一:caffe-windows(CPU)配置与利用mnist数据集训练第一个caffemodel

    一.前言 本文会详细地阐述caffe-windows的配置教程.由于博主自己也只是个在校学生,目前也写不了太深入的东西,所以准备从最基础的开始一步步来.个人的计划是分成配置和运行官方教程,利用自己的数 ...

  3. RNN入门(一)识别MNIST数据集

    RNN介绍   在读本文之前,读者应该对全连接神经网络(Fully Connected Neural Network, FCNN)和卷积神经网络( Convolutional Neural Netwo ...

  4. TensorFlow下利用MNIST训练模型并识别自己手写的数字

    最近一直在学习李宏毅老师的机器学习视频教程,学到和神经网络那一块知识的时候,我觉得单纯的学习理论知识过于枯燥,就想着自己动手实现一些简单的Demo,毕竟实践是检验真理的唯一标准!!!但是网上很多的与t ...

  5. MXNet学习-第一个例子:训练MNIST数据集

    一个门外汉写的MXNET跑MNIST的例子,三层全连接层最后验证率是97%左右,毕竟是第一个例子,主要就是用来理解MXNet怎么使用. #导入需要的模块 import numpy as np #num ...

  6. 【TensorFlow/简单网络】MNIST数据集-softmax、全连接神经网络,卷积神经网络模型

    初学tensorflow,参考了以下几篇博客: soft模型 tensorflow构建全连接神经网络 tensorflow构建卷积神经网络 tensorflow构建卷积神经网络 tensorflow构 ...

  7. TensorFlow——CNN卷积神经网络处理Mnist数据集

    CNN卷积神经网络处理Mnist数据集 CNN模型结构: 输入层:Mnist数据集(28*28) 第一层卷积:感受视野5*5,步长为1,卷积核:32个 第一层池化:池化视野2*2,步长为2 第二层卷积 ...

  8. 吴裕雄 python 神经网络TensorFlow实现LeNet模型处理手写数字识别MNIST数据集

    import tensorflow as tf tf.reset_default_graph() # 配置神经网络的参数 INPUT_NODE = 784 OUTPUT_NODE = 10 IMAGE ...

  9. Python实现bp神经网络识别MNIST数据集

    title: "Python实现bp神经网络识别MNIST数据集" date: 2018-06-18T14:01:49+08:00 tags: [""] cat ...

随机推荐

  1. vue项目中net::ERR_CONNECTION_TIMED_OUT错误

    我出错的原因时network地址与我本机ip地址不一致 Network: http://192.168.13.30:8080/ 处理方法: 在vue项目中新建一个vue.config.js文件 配置上 ...

  2. 简单说说PHP优化

    我们在编写程序时,总是想要使自己的程序占用资源最小,运行速度更快,代码量更少.往往我们在追求这些的同时却失去了很多东西.下面我想讲讲我对PHP优化的理解.优化的目的是花最少的代价换来最快的运行速度与最 ...

  3. 91)PHP,cookie代码展示

    cookie练习的代码: (1)先设置:setcookie('key值‘,’value值’): (2)然后我执行那个文件, (3)获取我的cookie值,用$_cookie['key值’]  cook ...

  4. 测试误区《二》 python逻辑运算和关系运算优先级

    关系运算 关系运算就是对2个对象进行比较,通过比较符判断进行比较,有6种方式. x > y 大于 x >= y 大于等于 x < y 小于 x <= y 小于等于 x = y ...

  5. sql执行过程

    作为一个程序员,几乎所有人都使用过 SQL 语言,无论是在命令行执行.程序调用,还是在 SQL 工具里,你都做过这样的事:写一个规范的 SQL 语句,然后等待数据库返回的结果,然后再基于结果做各种逻辑 ...

  6. 用shell脚本新建文件并自动生成头说明信息

    目标: 新建文件后,直接给文件写入下图信息 代码实现: [root@localhost test]# vi AutoHead.sh #!/bin/bash #此程序的功能是新建shell文件并自动生成 ...

  7. Android 一个3D相册源码

    我们专业课有Android的学习,最后老师让做一个简单的Android应用程序.我在网上找些资料,加上自己改造一下做了一个3D相册. 程序仿照Android的相册功能,调用Gallery类对相片进行浏 ...

  8. OpenCA搭建

    前言: OpenCA是OpenCA开源组织使用Perl对OpenSSL进行二次开发而成的一套完善的PKI免费软件,主要由四部分组成:CA.RA.PUB和NODE.简而言之,PUB是对外提供服务的接口, ...

  9. 15.uboot study 串口初始化

    3. 串口初始化 4. 代码实现 关于串口 对于嵌入式设备的开发,刚开始好多设备都无法使用,由于无法获得程序的运行状态,调试程序需要花费好多时间和精力,因此串口对于嵌入式程序的调试的作用显而易见,当串 ...

  10. SpringMVC 使用注解完成登录拦截

    目录 为了实现用户登录拦截你是否写过如下代码呢? 1. 基于Filter 2. 基于Struts 3. 基于SpringMVC 如何使用自定义注解完成自定义拦截呢? 登录注解 SpringMVC 拦截 ...