前言....

Akka作为一个天生用于构建分布式应用的工具,当然提供了用于分布式组件即Akka Remote,那么我们就来看看如何用Akka Remote以及Akka Serialization来构建分布式应用。

背景

很多同学在程序的开发中都会遇到一个问题,当业务需求变得越来越复杂,单机服务器已经不足以承载相应的请求的时候,我们都会考虑将服务部署到不同的服务器上,但服务器之间可能需要相互调用,那么系统必须拥有相互通信的接口,用于相应的数据交互,这时候一个好的远程调用方案是一个绝对的利器,主流的远程通信有以下几种选择:

  • RPC(Remote Procedure Call Protocol)
  • Web Service
  • JMS(Java Messaging Service)

这几种方式都是被采用比较广泛的通信方案,有兴趣的同学可以自己去了解一下,这里我会讲一下Java中的RPC即RMI (Remote Method Invocation)和JMS。

JAVA远程调用

RMI和JMS相信很多写过Java程序的同学都知道,是Java程序用来远程通信的主要方式,那么RMI和JMS又有什么区别呢?

1.RMI

i.特征:
  • 同步通信:在使用RMI调用远程方法时,线程会持续等待直到结果返回,所以它是一个同步阻塞操作;
  • 强耦合:请求的系统中需要使用的RMI服务进行接口声明,返回的数据类型有一定的约束;
ii.优点:
  • 实现相对简单,方法调用形式通俗易理解,接口声明服务功能清晰。
iii.缺点:
  • 只局限支持JVM平台;
  • 对无法兼容Java语言的其他语言也不适用;

2.JMS

i.特征:
  • 异步通信:JMS发送消息进行通信,在通信过程中,线程不会被阻塞,不必等待请求回应,所以是一个异步操作;
  • 松耦合:不需要接口声明,返回的数据类型可以是各种各样,比如JSON,XML等;
ii.通信方式:

(1)点对点消息传送模型

顾名思义,点对点可以理解为两个服务器的定点通信,发送者和接收者都能明确知道对方是谁,大致模型如下:

(2)发布/订阅消息传递模型

点对点模型有些场景并不是很适用,比如有一台主服务器,它产生一条消息需要让所有的从服务器都能收到,若采用点对点模型的话,那主服务器需要循环发送消息,后续若有新的从服务器增加,还要改主服务器的配置,这样就会导致不必要的麻烦,那么发布/订阅模型是怎么样的呢?其实这种模式跟设计模式中的观察者模式很相似,相信很多同学都很熟悉,它最大的特点就是较松耦合,易扩展等特点,所以发布/订阅模型的大致结构如下:

iii.优点:
  • 由于使用异步通信,不需要线程暂停等待,性能相对较高。
iiii.缺点:
  • 技术实现相对复杂,并需要维护相关的消息队列;

更通俗的说:

RMI可以看成是用打电话的方式进行信息交流,而JMS更像是发短信。

总的来说两种方式没有孰优孰劣,我们也不用比较到底哪种方式比较好,存在即合理,更重要的是哪种选择可能更适合你的系统。

RMI Example

这里我写一个RMI的例子,一方面来看一下它的使用方式,另一方面用于和后续的Akka Remote做一些比较:

首先我们来编写相应的传输对象和通信接口:

1.JoinRmiEvt:

public class JoinRmiEvt implements Remote , Serializable{
private static final long serialVersionUID = 1L;
private Long id;
private String name; public JoinRmiEvt(Long id, String name) {
this.id = id;
this.name = name;
} public Long getId() {
return id;
} public void setId(Long id) {
this.id = id;
} public String getName() {
return name;
} public void setName(String name) {
this.name = name;
}
}

2.RemoteRmi:

public interface RemoteRmi extends Remote {
public void sendNoReturn(String message) throws RemoteException, InterruptedException;
public String sendHasReturn(JoinRmiEvt joinRmiEvt) throws RemoteException;
}

然后在服务端对该接口进行实现:

3.RemoteRmiImpl:

public class RemoteRmiImpl extends UnicastRemoteObject implements RemoteRmi {

    private static final long serialVersionUID = 1L;

    public  RemoteRmiImpl() throws RemoteException {};

    @Override
public void sendNoReturn(String message) throws RemoteException, InterruptedException {
Thread.sleep(2000);
//throw new RemoteException();
} @Override
public String sendHasReturn(JoinRmiEvt joinRmiEvt) throws RemoteException {
if (joinRmiEvt.getId() >= 0)
return new StringBuilder("the").append(joinRmiEvt.getName()).append("has join").toString();
else return null;
}
}

接着我们在Server端绑定相应端口并发布服务,然后启动:

public class RemoteRMIServer {
public static void main(String[] args) throws RemoteException, AlreadyBoundException, MalformedURLException, InterruptedException {
System.out.println("the RemoteRMIServer is Starting ...");
RemoteRmiImpl remoteRmi = new RemoteRmiImpl();
System.out.println("Binding server implementation to registry");
LocateRegistry.createRegistry(2553);
Naming.bind("rmi://127.0.0.1:2553/remote_rmi",remoteRmi);
System.out.println("the RemoteRMIServer is Started");
Thread.sleep(10000000);
}
}

下面我们在Client端调用Server端的服务:

public class RemoteRmiClient {
public static void main(String[] args) throws RemoteException, NotBoundException, MalformedURLException, InterruptedException {
System.out.println("the client has started");
String url = "rmi://127.0.0.1:2553/remote_rmi";
RemoteRmi remoteRmi = (RemoteRmi) Naming.lookup(url);
System.out.println("the client has running");
remoteRmi.sendNoReturn("send no return");
System.out.println(remoteRmi.sendHasReturn(new JoinRmiEvt(1L,"godpan")));
System.out.println("the client has end");
}
}

运行结果:

从运行结果和代码上分析可得:

  • Java Rmi调用是一个阻塞的过程,这会导致一个问题,假如服务端的服务奔溃了,会导致客户端没有反应;
  • Java Rmi使用的是Java默认的序列化方式,性能并不是很好,而且并不提供支持使用其他序列化的接口,在一些性能要求高的系统会有一定的瓶颈;
  • 在Rmi中使用的相应的接口和对象必须实现相应的接口,必须制定抛出相应的Exception,导致代码看起来异常的繁琐;

Akka Remote

上面讲到JAVA中远程通信的方式,但我们之前说过Akka也是基于JVM平台的,那么它的通信方式又有什么不同呢?

在我看来,Akka的远程通信方式更像是RMI和JMS的结合,但更偏向于JMS的方式,为什么这么说呢,我们先来看一个示例:

我们先来创建一个远程的Actor:

class RemoteActor extends Actor {
def receive = {
case msg: String =>
println(s"RemoteActor received message '$msg'")
sender ! "Hello from the RemoteActor"
}
}

现在我们在远程服务器上启动这个Actor:

val system = ActorSystem("RemoteDemoSystem")
val remoteActor = system.actorOf(Props[RemoteActor], name = "RemoteActor")

那么现在我们假如有一个系统需要向这个Actor发送消息应该怎么做呢?

首先我们需要类似RMI发布自己的服务一样,我们需要为其他系统调用远程Actor提供消息通信的接口,在Akka中,设置非常简单,不需要代码侵入,只需简单的在配置文件里配置即可:

akka {
actor {
provider = "akka.remote.RemoteActorRefProvider"
}
remote {
enabled-transports = ["akka.remote.netty.tcp"]
netty.tcp {
hostname = $localIp //比如127.0.0.1
port = $port //比如2552
}
log-sent-messages = on
log-received-messages = on
}
}

我们只需配置相应的驱动,传输方式,ip,端口等属性就可简单完成Akka Remote的配置。

当然本地服务器也需要配置这些信息,因为Akka之间是需要相互通信的,当然配置除了hostname有一定的区别外,其他配置信息可一致,本例子是在同一台机器上,所以这里hostname是相同的。

这时候我们就可以在本地的服务器向这个Actor发送消息了,首先我们可以创建一个本地的Actor:

case object Init
case object SendNoReturn class LocalActor extends Actor{ val path = ConfigFactory.defaultApplication().getString("remote.actor.name.test")
implicit val timeout = Timeout(4.seconds)
val remoteActor = context.actorSelection(path) def receive: Receive = {
case Init => "init local actor"
case SendNoReturn => remoteActor ! "hello remote actor"
}
}

其中的remote.actor.name.test的值为:“akka.tcp://RemoteDemoSystem@127.0.0.1:4444/user/RemoteActor”,另外我们可以看到我们使用了context.actorSelection(path)来获取的是一个ActorSelection对象,若是需要获得ActorRef,我们可以调用它的resolveOne(),它返回的是是一个Future[ActorRef],这里是不是很熟悉,因为它跟本地获取Actor方式是一样的,因为Akka中Actor是位置透明的,获取本地Actor和远程Actor是一样的。

最后我们首先启动远程Actor的系统:

object RemoteDemo extends App  {
val system = ActorSystem("RemoteDemoSystem")
val remoteActor = system.actorOf(Props[RemoteActor], name = "RemoteActor")
remoteActor ! "The RemoteActor is alive"
}

然后我们在本地系统中启动这个LocalActor,并向它发送消息:

object LocalDemo extends App {

  implicit val system = ActorSystem("LocalDemoSystem")
val localActor = system.actorOf(Props[LocalActor], name = "LocalActor") localActor ! Init
localActor ! SendNoReturn
}

我们可以看到RemoteActor收到了一条消息:

从以上的步骤和结果看出可以看出,Akka的远程通信跟JMS的点对点模式似乎更相似一点,但是它有不需要我们维护消息队列,而是使用Actor自身的邮箱,另外我们利用context.actorSelection获取的ActorRef,可以看成远程Actor的副本,这个又和RMI相关概念类似,所以说Akka远程通信的形式上像是RMI和JMS的结合,当然底层还是通过TCP、UDP等相关网络协议进行数据传输的,从配置文件的相应内容便可以看出。

上述例子演示的是sendNoReturn的模式,那么假如我们需要远程Actor给我们一个回复应该怎么做呢?

首先我们创建一个消息:

case object SendHasReturn

 def receive: Receive = {
case SendHasReturn =>
for {
r <- remoteActor.ask("hello remote actor")
} yield r
}

我们重新运行LocalActor并像RemoteActor发送一条消息:

可以看到LocalActor在发送消息后并收到了RemoteActor返回来的消息,另外我们这里设置了超时时间,若在规定的时间内没有得到反馈,程序就会报错。

Akka Serialization

其实这一部分本可以单独拿出来写,但是相信序列化这块大家都应该有所了解了,所以就不准备讲太多序列化的知识了,怕班门弄斧,主要讲讲Akka中的序列化。

继续上面的例子,假如我们这时向RemoteActor发送一个自定义的对象,比如一个case class对象,但是我们这是是在网络中传输这个消息,那么怎么保证这个对象类型和值呢,在同一个JVM系统中我们不需要担心这个,因为对象就在堆中,我们只要传递相应的地址即可就行,但是在不同的环境中,我们并不能这么做,我们在网络中只能传输字节数据,所以我们必须将对象做特殊的处理,在传输的时候转化成特定的由一连串字节组成的数据,而且我们又可以根据这些数据恢复成一个相应的对象,这便是序列化。

我们先定义一个参与的case class, 并修改一下上面发送消息的语句:

case object SendSerialization
case class JoinEvt(
id: Long,
name: String
)
def receive: Receive = {
case SendSerialization =>
for {
r <- remoteActor.ask(JoinEvt(1L,"godpan"))
} yield println(r)
}

这时我们重新启动RemoteActor和LocalActor所在的系统,发送这条消息:

有同学可能会觉得奇怪,我们明明没有对JoinEvt进行过任何序列化的标识和处理,为什么程序还能运行成功呢?

其实不然,只不过是有人替我们默认做了,不用说,肯定是贴心的Akka,它为我们提供了一个默认的序列化策略,那就是我们熟悉又纠结的java.io.Serializable,沉浸在它的易使用性上,又对它的性能深恶痛绝,尤其是当有大量对象需要传输的分布式系统,如果是小系统,当我没说,毕竟存在即合理。

又有同学说,既然Akka是一个天生分布式组件,为什么还用低效的java.io.Serializable,你问我我也不知道,可能当时的作者偷了偷懒,当然Akka现在可能觉醒了,首先它支持第三方的序列化工具,当然如果你有特殊需求,你也可以自己实现一个,而且在最新的文档中说明,在Akka 2.5x之后Akka内核消息全面废弃java.io.Serializable,用户自定义的消息暂时还是支持使用java.io.Serializable的,但是不推荐用,因为它是低效的,容易被攻击,所以在这里我也推荐大家再Akka中尽量不要在使用了java.io.Serializable。

那么在Akka中我们如何使用第三方的序列化工具呢?

这里我推荐一个在Java社区已经久负盛名的序列化工具:kryo,有兴趣的同学可以去了解一下:kryo,而且它也提供Akka使用的相关包,这里我们就使用它作为示例:

这里我贴上整个项目的build.sbt, kryo的相关依赖也在里面:

import sbt._
import sbt.Keys._ lazy val AllLibraryDependencies =
Seq(
"com.typesafe.akka" %% "akka-actor" % "2.5.3",
"com.typesafe.akka" %% "akka-remote" % "2.5.3",
"com.twitter" %% "chill-akka" % "0.8.4"
) lazy val commonSettings = Seq(
name := "AkkaRemoting",
version := "1.0",
scalaVersion := "2.11.11",
libraryDependencies := AllLibraryDependencies
) lazy val remote = (project in file("remote"))
.settings(commonSettings: _*)
.settings(
// other settings
) lazy val local = (project in file("local"))
.settings(commonSettings: _*)
.settings(
// other settings
) 然后我们只需将application.conf中的actor配置替换成以下的内容: actor {
provider = "akka.remote.RemoteActorRefProvider"
serializers {
kryo = "com.twitter.chill.akka.AkkaSerializer"
}
serialization-bindings {
"java.io.Serializable" = none
"scala.Product" = kryo
}
}

其实其中的"java.io.Serializable" = none可以省略,因为若是有其他序列化的策略则会替换掉默认的java.io.Serializable的策略,这里只是为了更加仔细的说明。

至此我们就可以使用kryo了,整个过程是不是很easy,迫不及待开始写demo了,那就快快开始吧。

从运行结果和代码上分析可得:

  • Akka Remote使用内置的序列化工具,并支持配置指定的序列化方式,可以按需配置;
  • Akka Remote使用的过程是一个异步非阻塞的过程,客户端能尽量减少对服务端的依赖;
  • Akka Remote的代码实现相对Java Rmi实现来说简单的多,非常简洁;

整个例子的相关的源码已经上传到akka-demo中:源码链接

来源于: https://godpan.me/2017/08/10/learning-akka-9.html

Akka系列(九):Akka分布式之Akka Remote的更多相关文章

  1. Akka系列(二):Akka中的Actor系统

    前言......... Actor模型作为Akka中最核心的概念,所以Actor在Akka中的组织结构是至关重要,本文主要介绍Akka中Actor系统. 1.Actor系统 Actor作为一种封装状态 ...

  2. Akka系列(十):Akka集群之Akka Cluster

    前言........... 上一篇文章我们讲了Akka Remote,理解了Akka中的远程通信,其实Akka Cluster可以看成Akka Remote的扩展,由原来的两点变成由多点组成的通信网络 ...

  3. Akka系列(八):Akka persistence设计理念之CQRS

    前言........ 这一篇文章主要是讲解Akka persistence的核心设计理念,也是CQRS(Command Query Responsibility Segregation)架构设计的典型 ...

  4. Akka系列(四):Akka中的共享内存模型

    前言...... 通过前几篇的学习,相信大家对Akka应该有所了解了,都说解决并发哪家强,JVM上面找Akka,那么Akka到底在解决并发问题上帮我们做了什么呢? 共享内存 众所周知,在处理并发问题上 ...

  5. 手撕面试官系列(九):分布式限流面试专题 Nginx+zookeeper

    Nginx专题 (面试题+答案领取方式见侧边栏) 1.请解释一下什么是 Nginx?2.请列举 Nginx 的一些特性.3.请列举 Nginx 和 Apache 之间的不同点4.请解释 Nginx 如 ...

  6. Akka系列(三):监管与容错

    前言...... Akka作为一种成熟的生产环境并发解决方案,必须拥有一套完善的错误异常处理机制,本文主要讲讲Akka中的监管和容错. 监管 看过我上篇文章的同学应该对Actor系统的工作流程有了一定 ...

  7. Akka系列---什么是Actor

    本文已.Net语法为主,同时写有Scala及Java实现代码 严肃的说,演员是一个广泛的概念,作为外行人我对Actor 模型的定义: Actor是一个系统中参与者的虚拟人物,Actor与Actor之间 ...

  8. Akka系列(七):Actor持久化之Akka persistence

    前言.......... 我们在使用Akka时,会经常遇到一些存储Actor内部状态的场景,在系统正常运行的情况下,我们不需要担心什么,但是当系统出错,比如Actor错误需要重启,或者内存溢出,亦或者 ...

  9. Akka系列(五):Java和Scala中的Future

    前言....... 随着CPU的核数的增加,异步编程模型在并发领域中的得到了越来越多的应用,由于Scala是一门函数式语言,天然的支持异步编程模型,今天主要来看一下Java和Scala中的Futrue ...

随机推荐

  1. 阅读之Redis性能

    Redis作为一种KV缓存服务器,有着极高的性能,相对于memcache,Redis支持更多中数据类型,因此在业界广泛应用. Redis为什么快: 数据是存储在内存中的. Redis是单线程的. 将数 ...

  2. Acwing-102-最佳牛围栏(二分,实数)

    链接: https://www.acwing.com/problem/content/104/ 题意: 农夫约翰的农场由 N 块田地组成,每块地里都有一定数量的牛,其数量不会少于1头,也不会超过200 ...

  3. 微信小程序没找到构建npm或者没找到node_modules目录以及如何在小程序中引入vant weapp组件

    微信小程序没找到构建npm或者没找到node_modules目录解决方法如下: 按照微信小程序提供的文档npm install是不行的,直接提示没找到可构建的npm包. 1.直接安装:npm init ...

  4. 对JavaScript 引擎基础:Shapes 和 Inline Caches

    全文有5个部分组成 1.JavaScript 引擎工作流程:介绍 JavaScript 引擎的处理流水线,这一部分会涉及到解释器/编译器的内容,且会分点介绍不同引擎间的差别与共同点: 2.JavaSc ...

  5. libkmcuda安装

    编译安装 1,前期准备 git clone https://github.com/src-d/kmcuda cd kmcuda/src/ 例如: cmake -DCMAKE_BUILD_TYPE=Re ...

  6. 什么是iframe及作用是什么?

    一. iframe是什么及作用 iframe是嵌入式框架, 是html标签, 还是一个内联元素, iframe 元素会创建包含另外一个文档的内联框架(即行内框架) . 说白了, iframe用来在页面 ...

  7. CentOS7.2 安装 PHP7.2

    安装源 安装 EPEL 软件包: $ sudo yum install epel-release 安装 remi 源: $ sudo yum install http://rpms.remirepo. ...

  8. Nowcoder Playing Games ( FWT 优化 DP && 博弈论 && 线性基)

    题目链接 题意 : 给出 N 个数.然后问你最多取出多少石子使得在 NIM 博弈中.后手必胜 分析 :  Nim 博弈模型,后手必胜当且仅当各个堆的石子的数目的异或和为 0 转化一下.变成最少取多少石 ...

  9. 试用saucelabs进行浏览器兼容性测试

    Hi,all 跟大家分享下saucelabs,一个云测试平台,支持PC和手机(自带的)浏览器的兼容性测试,并且支持selenium/appium的自动化测试,不过是收费的,价格还挺贵,但是人工的测试是 ...

  10. Linux系统下MySql表名大小写敏感问题

    mysql是通过lower_case_table_names变量来处理大小写问题的. 首先查询该变量 mysql在Linux下数据库名.表名.列名.表别名大小写规则如下: 1.数据库名与表名严格区分大 ...