Monkey and Banana

Time Limit: 2000/1000 MS (Java/Others)    Memory Limit: 65536/32768 K (Java/Others)
Total Submission(s): 24147    Accepted Submission(s): 12938

Problem Description

A group of researchers are designing an experiment to test the IQ of a monkey. They will hang a banana at the roof of a building, and at the mean time, provide the monkey with some blocks. If the monkey is clever enough, it shall be able to reach the banana by placing one block on the top another to build a tower and climb up to get its favorite food.

The
researchers have n types of blocks, and an unlimited supply of blocks
of each type. Each type-i block was a rectangular solid with linear
dimensions (xi, yi, zi). A block could be reoriented so that any two of
its three dimensions determined the dimensions of the base and the other
dimension was the height.

They want to make sure that the
tallest tower possible by stacking blocks can reach the roof. The
problem is that, in building a tower, one block could only be placed on
top of another block as long as the two base dimensions of the upper
block were both strictly smaller than the corresponding base dimensions
of the lower block because there has to be some space for the monkey to
step on. This meant, for example, that blocks oriented to have
equal-sized bases couldn't be stacked.

Your job is to write a program that determines the height of the tallest tower the monkey can build with a given set of blocks.



Input

The input file will contain one or more test cases. The first line of each test case contains an integer n,
representing the number of different blocks in the following data set. The maximum value for n is 30.
Each of the next n lines contains three integers representing the values xi, yi and zi.
Input is terminated by a value of zero (0) for n.



Output

For
each test case, print one line containing the case number (they are
numbered sequentially starting from 1) and the height of the tallest
possible tower in the format "Case case: maximum height = height".

Sample Input


Sample Output

Case : maximum height =
Case : maximum height =
Case : maximum height =
Case : maximum height =

题目大意

给出一些长方体的规格,每种长方体都有无限个,问利用这些长方体(长宽高可以转换),下层的长和宽都比上层的大,最多能堆多高

题目分析

虽说是无限多个,但是由于长和高堆起来都不能相等,所以一个规格的长方体最多能用6个(长宽高的不同排列),这样就将题目转化成了一个有限的木块的题目。

首先将木块按照x值与y值从大到小排序,用dp[i]来记录i为最顶端木块时,所能达到的最大高度。

由于我们已经将木块排好序了,那么处理到 i 木块时,能在这个木块底下的就只有 [0, i-1] 这些木块,所以用一个 j 从0循环到 i-1:

如果i的x和y小于j的x和y,那么dp[i]显然等于:max ( dp[j] + a[i].h , dp[i] )

求出dp[i]时,要注意更新结果。

代码

#include <bits/stdc++.h>  

using namespace std; 

typedef struct
{
int x;
int y;
int h;
}node;
node a[]; int i,n,num,x,y,z,t=,anss,dp[],j; bool cmp (node a,node b)
{
if(a.x>b.x)
return ;
else if(a.x==b.x&&a.y>b.y)
return ;
else return ;
} int main()
{
while(scanf("%d",&n),n!=)
{
t++;
memset(a,,sizeof(a));
num=;
for(i=;i<=n;i++)
{
scanf("%d %d %d",&x,&y,&z);
//cout<<x<<y<<z;
a[num].x=x,a[num].y=y,a[num].h=z;
num++;
a[num].x=y,a[num].y=x,a[num].h=z;
num++;
a[num].x=z,a[num].y=x,a[num].h=y;
num++;
a[num].x=z,a[num].y=y,a[num].h=x;
num++;
a[num].x=x,a[num].y=z,a[num].h=y;
num++;
a[num].x=y,a[num].y=z,a[num].h=x;
num++;
}
sort(a,a+num,cmp);
anss=;
memset(dp,,sizeof(dp));
for(i=;i<num;i++)
dp[i]=a[i].h;
for(i=;i<num;i++)
{
for(j=;j<i;j++)
{
if(a[i].x<a[j].x&&a[i].y<a[j].y)
dp[i]=max(dp[j]+a[i].h,dp[i]);
}
if(dp[i]>anss)
anss=dp[i];
}
printf("Case %d: maximum height = %d\n",t,anss);
}
}

HDU 1069 Monkey and Banana (动态规划、上升子序列最大和)的更多相关文章

  1. HDU 1069 Monkey and Banana dp 题解

    HDU 1069 Monkey and Banana 纵有疾风起 题目大意 一堆科学家研究猩猩的智商,给他M种长方体,每种N个.然后,将一个香蕉挂在屋顶,让猩猩通过 叠长方体来够到香蕉. 现在给你M种 ...

  2. HDU 1069 Monkey and Banana / ZOJ 1093 Monkey and Banana (最长路径)

    HDU 1069 Monkey and Banana / ZOJ 1093 Monkey and Banana (最长路径) Description A group of researchers ar ...

  3. HDU 1069 Monkey and Banana(转换成LIS,做法很值得学习)

    题目链接:http://acm.hdu.edu.cn/showproblem.php?pid=1069 Monkey and Banana Time Limit: 2000/1000 MS (Java ...

  4. HDU 1069 Monkey and Banana(动态规划)

    Monkey and Banana Problem Description A group of researchers are designing an experiment to test the ...

  5. HDU 1069 Monkey and Banana(二维偏序LIS的应用)

    ---恢复内容开始--- Monkey and Banana Time Limit: 2000/1000 MS (Java/Others)    Memory Limit: 65536/32768 K ...

  6. HDU 1069 Monkey and Banana (DP)

    Monkey and Banana Time Limit:1000MS     Memory Limit:32768KB     64bit IO Format:%I64d & %I64u S ...

  7. HDU 1069—— Monkey and Banana——————【dp】

    Monkey and Banana Time Limit:1000MS     Memory Limit:32768KB     64bit IO Format:%I64d & %I64u S ...

  8. HDU 1069 Monkey and Banana 基础DP

    题目链接:Monkey and Banana 大意:给出n种箱子的长宽高.每种不限个数.可以堆叠.询问可以达到的最高高度是多少. 要求两个箱子堆叠的时候叠加的面.上面的面的两维长度都严格小于下面的. ...

  9. hdu 1069 Monkey and Banana

    Monkey and Banana Time Limit: 2000/1000 MS (Java/Others)    Memory Limit: 65536/32768 K (Java/Others ...

随机推荐

  1. Spring MVC 面试题

    什么是springMVC?作用? springMVC是一种web层mvc框架,用于替代servlet(处理|响应请求,获取表单参数,表单校验等). 为什么要用springMVC? 基本上,框架的作用就 ...

  2. Python基础-day05

    高级变量类型 目标 列表 元组 字典 字符串 公共方法 变量高级 知识点回顾 Python 中数据类型可以分为 数字型 和 非数字型 数字型 整型 (int) 浮点型(float) 布尔型(bool) ...

  3. 让IE8一下兼容CSS3选择器

    来自英国的网页开发工程师Keith Clark 开发了一个JavaScript方案来使IE支持CSS3选择器.该脚本支持从IE5到IE8的各个版本. 首先,您需要下载DOMAssistant脚本和ie ...

  4. 运行时错误:“stack around the variable…was corrupted”

    造冰箱的大熊猫@cnblogs 2018/11/1 引发问题的代码片段如下 WORD var; scanf ( "%d", &var ); 包含上述代码的程序,编译正常,运 ...

  5. POJ 3352 Road Construction 中一个结论的证明

    题面 分析: 很多人都给出了做法,在这里不赘述.大概就是先把桥找出来,然后边双缩点,最后统计新图上的度数.因为缩点后为一棵树,所以度数为1(即为叶子)的点的数目+1再除以2下取整就是答案. 这里主要证 ...

  6. 「TJOI2019」甲苯先生的滚榜

    题目链接 问题分析 参照数据范围,我们需要一个能够在\(O(n\log n)\)复杂度内维护有序数列的数据结构.那么平衡树是很好的选择.参考程序中使用带旋Treap. 参考程序 #pragma GCC ...

  7. RMQ的ST算法

    ·RMQ的ST算法    状态设计:        F[i, j]表示从第i个数起连续2^j个数中的最大值    状态转移方程(二进制思想):        F[i, j]=max(F[i,j-1], ...

  8. JS框架_(JQuery.js)文章全屏动画切换

    百度云盘 传送门 密码:anap 文章全屏动画切换效果 <!doctype html> <html lang="zh"> <head> < ...

  9. [CSP-S模拟测试]:集合合并(记忆化搜索)

    题目传送门(内部题133) 输入格式 第一行一个正整数$n$. 第二行$n$个正整数$a_i$,表示一开始有$S_i=\{a_i\}$ 输出格式 输出一个非负整数表示最大的收益之和 样例 样例输入: ...

  10. C++入门经典-例6.17-输出每行数组中的最小值

    1:代码如下: // 6.17.cpp : 定义控制台应用程序的入口点. // #include "stdafx.h" #include<iostream> using ...