高精度求A*B(FFT)
A * B Problem Plus
链接:http://acm.hdu.edu.cn/showproblem.php?pid=1402
Time Limit: 2000/1000 MS (Java/Others) Memory Limit: 65536/32768 K (Java/Others)
Total Submission(s): 26449 Accepted Submission(s): 6917
Note: the length of each integer will not exceed 50000.
2
1000
2
2000
#include <stdio.h>
#include <string.h>
#include <iostream>
#include <algorithm>
#include <math.h>
using namespace std; const double PI = acos(-1.0);
//复数结构体
struct complex
{
double r,i;
complex(double _r = 0.0,double _i = 0.0)
{
r = _r; i = _i;
}
complex operator +(const complex &b)
{
return complex(r+b.r,i+b.i);
}
complex operator -(const complex &b)
{
return complex(r-b.r,i-b.i);
}
complex operator *(const complex &b)
{
return complex(r*b.r-i*b.i,r*b.i+i*b.r);
}
};
/*
* 进行FFT和IFFT前的反转变换。
* 位置i和 (i二进制反转后位置)互换
* len必须去2的幂
*/
void change(complex y[],int len)
{
int i,j,k;
for(i = , j = len/;i < len-; i++)
{
if(i < j)swap(y[i],y[j]);
//交换互为小标反转的元素,i<j保证交换一次
//i做正常的+1,j左反转类型的+1,始终保持i和j是反转的
k = len/;
while( j >= k)
{
j -= k;
k /= ;
}
if(j < k) j += k;
}
}
/*
* 做FFT
* len必须为2^k形式,
* on==1时是DFT,on==-1时是IDFT
*/
void fft(complex y[],int len,int on)
{
change(y,len);
for(int h = ; h <= len; h <<= )
{
complex wn(cos(-on**PI/h),sin(-on**PI/h));
for(int j = ;j < len;j+=h)
{
complex w(,);
for(int k = j;k < j+h/;k++)
{
complex u = y[k];
complex t = w*y[k+h/];
y[k] = u+t;
y[k+h/] = u-t;
w = w*wn;
}
}
}
if(on == -)
for(int i = ;i < len;i++)
y[i].r /= len;
}
const int MAXN = ;
complex x1[MAXN],x2[MAXN];
char str1[MAXN/],str2[MAXN/];
int sum[MAXN];
int main()
{
ios_base::sync_with_stdio();
cin.tie();
while(cin>>str1>>str2)
{
int len1 = strlen(str1);
int len2 = strlen(str2);
int len = ;
while(len < len1* || len < len2*)len<<=;
for(int i = ;i < len1;i++)
x1[i] = complex(str1[len1--i]-'',);//这里的len1-1-i主要是为了下面的求和
for(int i = len1;i < len;i++)
x1[i] = complex(,);
for(int i = ;i < len2;i++)
x2[i] = complex(str2[len2--i]-'',);
for(int i = len2;i < len;i++)
x2[i] = complex(,);
//求DFT
fft(x1,len,);
fft(x2,len,);
for(int i = ;i < len;i++)
x1[i] = x1[i]*x2[i];
fft(x1,len,-);
for(int i = ;i < len;i++)
sum[i] = (int)(x1[i].r+0.5);
for(int i = ;i < len;i++)
{
sum[i+]+=sum[i]/;
sum[i]%=;
}
len = len1+len2-;
while(sum[len] <= && len > )len--;
for(int i = len;i >= ;i--)
printf("%c",sum[i]+'');
printf("\n");
}
return ;
}
高精度求A*B(FFT)的更多相关文章
- C# 高精度求幂 poj1001
高精度求幂 public static char[] exponentiation(string a,int r) { ]; string b = ""; string c = a ...
- Contset Hunter 1102 高精度求卡特兰数
用递推的方式写的写挂了,而如果用组合数又不会高精度除法,偶然看到了别人的只用高精度乘低精度求组合数的方法,记录一下 #include<bits/stdc++.h> using namesp ...
- 多项式求逆/分治FFT 学习笔记
一.多项式求逆 给定一个多项式 \(F(x)\),请求出一个多项式 \(G(x)\), 满足 \(F(x) * G(x) \equiv 1 ( \mathrm{mod\:} x^n )\).系数对 \ ...
- [模板] 多项式: 乘法/求逆/分治fft/微积分/ln/exp/幂
多项式 代码 const int nsz=(int)4e5+50; const ll nmod=998244353,g=3,ginv=332748118ll; //basic math ll qp(l ...
- ACM-ICPC 2018 焦作赛区网络预赛 G Give Candies(高精度求余)
https://nanti.jisuanke.com/t/31716 题意 n颗糖果n个人,按顺序给每个人任意数目(至少一个)糖果,问分配方案有多少. 分析 插板法或者暴力打表后发现答案就为2^(n- ...
- bzoj 3456 城市规划 多项式求逆+分治FFT
城市规划 Time Limit: 40 Sec Memory Limit: 256 MBSubmit: 1091 Solved: 629[Submit][Status][Discuss] Desc ...
- codevs 4165 高精度求阶乘
时间限制: 1 s 空间限制: 256000 KB 题目等级 : 白银 Silver 题目描述 Description 用高精度计算出S=n! 其中"!"表示阶乘,例如:5!= ...
- hdu 5730 Shell Necklace [分治fft | 多项式求逆]
hdu 5730 Shell Necklace 题意:求递推式\(f_n = \sum_{i=1}^n a_i f_{n-i}\),模313 多么优秀的模板题 可以用分治fft,也可以多项式求逆 分治 ...
- 转自 z55250825 的几篇关于FFT的博文(一)
关于FFT,咱们都会迫不及待地 @ .....(大雾)(貌似被玩坏了...) .....0.0学习FFT前先orz FFT君. 首先先是更详细的链接(手写版题解点赞0v ...
随机推荐
- Java实现二分法(折半)查找数组中的元素
二分查找 算法思想:又叫折半查找,要求待查找的序列有序.每次取中间位置的值与待查关键字比较,如果中间位置的值比待查关键字大,则在前半部分循环这个查找的过程,如果中间位置的值比待查关键字小,则在后半部分 ...
- 转载他人的efk搭建文章后边有链接和地址
EFK教程 - EFK快速入门指南 通过部署elasticsearch(三节点)+filebeat+kibana快速入门EFK,并搭建起可用的demo环境测试效果 目录 ▪ 用途▪ 实验架构▪ E ...
- MySQL优化系列之一
MySQL数据库常见的两个瓶颈是CPU和I/O. CPU在饱和的情况下一般发生在数据装入内存或者从磁盘上读取数据的时候,当装入的数据远大于 内存容量的时候,这时可能会发生I/O瓶颈, 如果是分布式应用 ...
- pugixml的使用
VS项目,头文件处鼠标右键,添加“新建筛选器”,重命名为pugixml,把3个文件添加进来.在用到框架的文件中只需#include"pugixml\pugixml.hpp"即可. ...
- Random 生成随机数
Random类 (java.util) Random类中实现的随机算法是伪随机,也就是有规则的随机.在进行随机时,随机算法的起源数字称为种子数(seed),在种子数的基础上进行一定的变换,从而产生需要 ...
- ajax处理返回的三种格式(json格式 , xml通用格式 , html文本格式)(数据类型:整数、字符串、数组、对象)(基础最重要!)
ajax方法的参数 常用的ajax参数比如url,data,type,包括预期返回类型dataType,发送到服务器的数据的编码类型contentType,成功方法,失败方法,完成方法.除了这些以外还 ...
- nyoj 83:迷宫寻宝(二)(计算几何)
题目链接 枚举所有墙的2n个端点与宝物的位置作为一条线段(墙的端点必定与边界重合), 求出与之相交的最少线段数(判断线段相交时用跨立实验的方法),+1即为结果. #include<bits/st ...
- centos在线安装mysql报错:file /etc/my.cnf conflicts between attempted installs of mysql-community-server-8.0.16-2.el7.x86_64 and MariaDB-common-10.4.6-1.el7.centos.x86_64
错误提示:file /etc/my.cnf conflicts between attempted installs of mysql-community-server-8.0.16-2.el7.x8 ...
- Struts2基础-3 -继承ActionSupport接口创建Action控制器+javaBean接收请求参数+ 默认Action配置处理请求错误 + 使用ActionContext访问ServletAPI
1.目录结构及导入的jar包 2.web.xml 配置 <?xml version="1.0" encoding="UTF-8"?> <web ...
- 常见HTTP错误代码
了解更多HTTP错误代码 一些常见的状态码为: 200 - 服务器成功返回网页404 - 请求的网页不存在503 - 服务不可用详细分解: 1xx(临时响应)表示临时响应并需要请求者继续执行操作的状态 ...