题面

其实这道题不用组合数!不用容斥!

只需要一个gcd和无脑找规律(滑稽

乍一看题目,如果单纯求合法三角形的话情况太多太复杂,我们可以从局部入手,最终扩展到整体。

首先考虑这样的情况:

类似地,我们把三角形三个顶点都在网格边界上,且网格内任意一条线都可以把三角形切成两部分的情况,称为完全覆盖。

下面这种就不算:

不难发现每个顶点在格点上的三角形,都有且仅有一个被它完全覆盖的网格。
所以可将原问题转化为:求出矩形中所有子矩形的完全覆盖三角形数。

又因为完全覆盖三角形数只与子矩形大小有关,与其位置无关,

而且手模一下可以发现

一个$nm$的矩形内,大小为$ij$的子矩形个数为$(n-i+1)*(m-j+1)$。

所以接下来只要求解一定长宽矩形内 完全覆盖三角形的的个数即可

然后观察可得 (迄今为止我似乎没有用除了观察之外的方法证明过东西)

如果三角形XYZ完全覆盖矩形ABCD,那么它至少有一端点在ABCD的角上。

那么接下来就可以按照 XYZ有几个端点在矩形角上分类讨论。
设矩形长为i,宽为j。

  • 一个端点在角上

角的选择有4种,三角形另外两端点必在两边上,共有$(i-1)*(j-1)$种。

所以这部分答案为$4*(i-1)*(j-1)$

  • 两个端点在角上

第一种:

答案:\(i-1\)

第二种:

答案:\(j-1\)

第三种:

三角形有一条边与矩形对角线重合。

此时三角形剩下那个端点除了四个角以及它的对边上的格点之外,可以随便放。
那么这条对边(即矩形的一条对角线)上有几个格点呢?

$gcd(i,j)-1$个。(不包括对边的两个端点)

答案:\((i+1)*(j+1)-4-gcd(i,j)+1\)

  • 三个端点在角上

显然4种。

另外,以上三种情况都可以对称过去得到不同的方案,所以$*2$。

化简可得$ans=6ij-2*gcd(i,j)$

复杂度:\(O(mnlog^{m+n})\)

#include<cstdio>
#include<iostream>
#include<cstring>
using namespace std;
typedef long long ll;
ll m,n;
int gcd(int x,int y)
{
if(!y)return x;
return gcd(y,x%y);
}
int main()
{
scanf("%lld%lld",&m,&n);
ll ans=0;
for(int i=1;i<=n;i++)
for(int j=1;j<=m;j++)
ans+=(6*i*j-2LL*gcd(i,j))*(n-i+1)*(m-j+1);
cout<<ans<<endl;
return 0;
}

本文主要参考:https://www.luogu.org/blog/suwakow/solution-p3166

[CQOI2014]数三角形 题解(找规律乱搞)的更多相关文章

  1. [CQOI2014]数三角形 题解(组合数学+容斥)

    [CQOI2014]数三角形 题解(数论+容斥) 标签:题解 阅读体验:https://zybuluo.com/Junlier/note/1328780 链接题目地址:洛谷P3166 BZOJ 350 ...

  2. Codeforces 193E - Fibonacci Number(打表找规律+乱搞)

    Codeforces 题目传送门 & 洛谷题目传送门 蠢蠢的我竟然第一眼想套通项公式?然鹅显然 \(5\) 在 \(\bmod 10^{13}\) 意义下并没有二次剩余--我真是活回去了... ...

  3. BZOJ 3505: [Cqoi2014]数三角形 数学

    3505: [Cqoi2014]数三角形 Time Limit: 1 Sec Memory Limit: 256 MB 题目连接 http://www.lydsy.com/JudgeOnline/pr ...

  4. Bzoj 3505: [Cqoi2014]数三角形 数论

    3505: [Cqoi2014]数三角形 Time Limits: 1000 ms  Memory Limits: 524288 KB  Detailed Limits   Description

  5. 【BZOJ3505】[Cqoi2014]数三角形 组合数

    [BZOJ3505][Cqoi2014]数三角形 Description 给定一个nxm的网格,请计算三点都在格点上的三角形共有多少个.下图为4x4的网格上的一个三角形. 注意三角形的三点不能共线. ...

  6. 【bzoj3505】[Cqoi2014]数三角形

    [bzoj3505][Cqoi2014]数三角形 2014年5月15日3,5230 Description 给定一个nxm的网格,请计算三点都在格点上的三角形共有多少个.下图为4×4的网格上的一个三角 ...

  7. bzoj 3505: [Cqoi2014]数三角形 组合数学

    3505: [Cqoi2014]数三角形 Time Limit: 10 Sec  Memory Limit: 128 MBSubmit: 478  Solved: 293[Submit][Status ...

  8. BZOJ 3505: [Cqoi2014]数三角形( 组合数 )

    先n++, m++ 显然答案就是C(3, n*m) - m*C(3, n) - n*C(3, m) - cnt. 表示在全部点中选出3个的方案减去不合法的, 同一行/列的不合法方案很好求, 对角线的不 ...

  9. 3505: [Cqoi2014]数三角形

    3505: [Cqoi2014]数三角形 Time Limit: 10 Sec  Memory Limit: 128 MBSubmit: 1324  Solved: 807[Submit][Statu ...

随机推荐

  1. Qt的信号和槽机制

    一.信号和槽机制 信号和槽用于两个对象之间的通信,我们希望任何对象都可以和其他对象进行通信.     当一个特殊的事情发生时便可以发射一个信号,而槽就是一个函数,它在信号发射后被调用来相应这个信号.( ...

  2. 【Flutter学习】基本组件之进度条(LinearProgressIndicator, CircularProgressIndicator)

    一,概述 基本有两种类型: 条形进度条(LinearProgressIndicator) new LinearProgressIndicator( backgroundColor: Colors.bl ...

  3. 如何在程序中执行动态生成的Delphi代码

    如何在程序中执行动态生成的Delphi代码 经常发现有人提这类问题,或者提问内容最后归结成这种问题 前些阵子有位高手写了一个“执行动态生成的代码”,这是真正的高手,我没那种功力,我只会投机取巧. 这里 ...

  4. [CSP-S模拟测试60]题解

    回去要补一下命运石之门了…… A.嘟嘟噜 给定报数次数的约瑟夫,递推式为$ans=(ans+m)\% i$. 考虑优化,中间很多次$+m$后是不用取模的,这种情况就可以把加法变乘法了.问题在于如何找到 ...

  5. HTML-参考手册: 功能排序

    ylbtech-HTML-参考手册: 功能排序 1.返回顶部 1. 功能排序 New : HTML5 新标签 标签 描述 基础   <!DOCTYPE>  定义文档类型. <html ...

  6. css代码思考:display和float

    关于display <!DOCTYPE html> <html lang="en"> <head> <meta charset=" ...

  7. 86、使用Tensorflow实现,LSTM的时间序列预测,预测正弦函数

    ''' Created on 2017年5月21日 @author: weizhen ''' # 以下程序为预测离散化之后的sin函数 import numpy as np import tensor ...

  8. 更换nginx默认端口以及配置文件位置

    前言 近段时间在准备毕业设计的前期准备,基本确定了前后端分离的架构,于是就需要用到了nginx. 在之前nginx是放在docker上,所以没有端口更改跟配置文件配置的烦恼.但是现在是直接放在服务器上 ...

  9. Python变量空间

    a==b的时候a和b指向同一个ID,然后a重新赋值后a指向另一个ID 那么这样的话,变量(a...)不就是数据空间"123"的引用了吗(其实在Python中这才是正确的说法)

  10. 多线程实现奇偶统计v1 - 暴力版

    #include <stdio.h> #include <stdlib.h> #include <time.h> #include "pthread.h& ...