题意:给n个点m条边的有向图。每次使一条边反向,问你1到2的最短路变短,变长,还是不变。

解法:遇到这种题容易想到正向求一遍最短路d1,反向再求一遍最短路d2。纪录原图上的最短路为ans,然后分开考虑各种情况。

变短的情况:d1[y[i]]+d2[x[i]]+z[i]<ans

否则就剩下不变和变长两种情况:那么如果边(x,y)是起点到终点的最短路必须边的话,就会变长,否则会不变。

接下来的问题是  怎么求最短路的必经边?

求出原图1到2最短路图(这里要和求单源点的最短路图区别开来,单源点的最短路图使起点到所有其他点的最短路的集合),求法:如果d1[x[i]]+z[i]+d2[y[i]]==ans的话边(x[i],y[i])就在起点到终点的最短路图上。  把这个图变为无向图,用tarjan求桥。如果边(x,y)是桥的话就是必经边,否则为非必经边。

细节详见代码:

#include<bits/stdc++.h>
using namespace std;
typedef long long LL;
typedef pair<LL,LL> pii;
const int N=1e5+;
LL n,m,ans;
LL d1[N],d2[N],x[N],y[N],z[N]; LL cnt=,head[N],to[N<<],nxt[N<<],len[N<<];
void add_edge(LL x,LL y,LL z) {
nxt[++cnt]=head[x]; to[cnt]=y; len[cnt]=z; head[x]=cnt;
} bool vis[N];
priority_queue<pii> q;
void Dijkstra(LL d[],LL s) {
while (!q.empty()) q.pop();
memset(vis,,sizeof(vis));
d[s]=; q.push(make_pair(,s));
while (!q.empty()) {
pii x=q.top(); q.pop();
if (vis[x.second]) continue;
vis[x.second]=;
for (LL i=head[x.second];i;i=nxt[i]) {
LL y=to[i];
if (d[y]>d[x.second]+len[i]) {
d[y]=d[x.second]+len[i];
q.push(make_pair(-d[y],y));
}
}
}
} int num,low[N],dfn[N],bridge[N];
void tarjan(int x,int in) {
dfn[x]=low[x]=++num;
for (int i=head[x];i;i=nxt[i]) {
int y=to[i];
if (!dfn[y]) {
tarjan(y,i);
low[x]=min(low[x],low[y]); if (low[y]>dfn[x])
bridge[len[i]]=bridge[len[i^]]=;
} else if (i!=(in^))
low[x]=min(low[x],dfn[y]);
}
} void getbridge() {
cnt=; memset(head,,sizeof(head));
for (int i=;i<=m;i++)
if (d1[x[i]]+z[i]+d2[y[i]]==ans)
add_edge(x[i],y[i],i),add_edge(y[i],x[i],i);
for (int i=;i<=n;i++)
if (!dfn[i]) tarjan(i,);
} int main()
{
cin>>n>>m;
for (int i=;i<=m;i++) scanf("%lld%lld%lld",&x[i],&y[i],&z[i]); memset(d1,0x3f,sizeof(d1)); memset(d2,0x3f,sizeof(d2));
for (int i=;i<=m;i++) add_edge(x[i],y[i],z[i]);
Dijkstra(d1,); cnt=; memset(head,,sizeof(head));
for (int i=;i<=m;i++) add_edge(y[i],x[i],z[i]);
Dijkstra(d2,); ans=d1[]; getbridge(); for (int i=;i<=m;i++)
if (ans>d1[y[i]]+d2[x[i]]+z[i]) puts("HAPPY");
else if (bridge[i]) puts("SAD"); else puts("SOSO");
return ;
}

(好题)2017-2018 ACM-ICPC, Asia Tsukuba Regional Contest F Pizza Delivery的更多相关文章

  1. 2017-2018 ACM-ICPC, Asia Tsukuba Regional Contest

    2017-2018 ACM-ICPC, Asia Tsukuba Regional Contest A Secret of Chocolate Poles 思路:暴力枚举黑巧克力的个数和厚黑巧克力的个 ...

  2. ACM ICPC Central Europe Regional Contest 2013 Jagiellonian University Kraków

    ACM ICPC Central Europe Regional Contest 2013 Jagiellonian University Kraków Problem A: Rubik’s Rect ...

  3. 2019-2020 ICPC, Asia Jakarta Regional Contest (Online Mirror, ICPC Rules, Teams Preferred)

    2019-2020 ICPC, Asia Jakarta Regional Contest (Online Mirror, ICPC Rules, Teams Preferred) easy: ACE ...

  4. Gym101986: Asia Tsukuba Regional Contest(寒假自训第12场)

    A .Secret of Chocolate Poles 题意:有黑白两种木块,黑色有1,K两种长度: 白色只有1一种长度,问满足黑白黑...白黑形式,长度为L的组合种类. 思路:直接DP即可. #i ...

  5. 2018 ICPC Asia Jakarta Regional Contest

    题目传送门 题号 A B C D E F G H I J K L 状态 Ο . . Ο . . Ø Ø Ø Ø . Ο Ο:当场 Ø:已补 .  :  待补 A. Edit Distance Thin ...

  6. Gym - 101981K The 2018 ICPC Asia Nanjing Regional Contest K.Kangaroo Puzzle 暴力或随机

    题面 题意:给你1个20*20的格子图,有的是障碍有的是怪,你可以每次指定上下左右的方向,然后所有怪都会向那个方向走, 如果2个怪撞上了,就融合在一起,让你给不超过5w步,让所有怪都融合 题解:我们可 ...

  7. Gym - 101981M The 2018 ICPC Asia Nanjing Regional Contest M.Mediocre String Problem Manacher+扩增KMP

    题面 题意:给你2个串(长度1e6),在第一个串里找“s1s2s3”,第二个串里找“s4”,拼接后,是一个回文串,求方案数 题解:知道s1和s4回文,s2和s3回文,所以我们枚举s1的右端点,s1的长 ...

  8. Gym - 101981G The 2018 ICPC Asia Nanjing Regional Contest G.Pyramid 找规律

    题面 题意:数一个n阶三角形中,有多少个全等三角形,n<=1e9 题解:拿到题想找规律,手画开始一直数漏....,最后还是打了个表 (打表就是随便定个点为(0,0),然后(2,0),(4,0), ...

  9. Gym - 101981I The 2018 ICPC Asia Nanjing Regional Contest I.Magic Potion 最大流

    题面 题意:n个英雄,m个怪兽,第i个英雄可以打第i个集合里的一个怪兽,一个怪兽可以在多个集合里,有k瓶药水,每个英雄最多喝一次,可以多打一只怪兽,求最多打多少只 n,m,k<=500 题解:显 ...

随机推荐

  1. poj 2104 无修改主席树

    题目大意: 求序列的区间第k大 基本思路: 因为我根本就没有思路,知道这是主席树,我就去学了下,在b站上看了uestc的教学视频,然后看了一篇博客,博客http://www.cnblogs.com/E ...

  2. plt.imshow()

    import matplotlib.pyplot as plt plt.imshow(digits.images[-1], cmap = plt.cm.gray_r) .imshow() Plotti ...

  3. easyUi-datagrid 真分页 + 工具栏添加控件

    1.  新建Pager.js /** * * @param {any} el 元素 */ function showDataGrid1(el) { $(el).datagrid({ title: '分 ...

  4. Python--模块之time、random、os、hashlib

    今天开始模块. 首先补充 __init__.py       在python模块的每一个包中,都有一个__init__.py文件(这个文件定义了包的属性和方法)然后是一些模块文件和子目录,假如子目录中 ...

  5. 阿里云 Centos 7 PHP7环境配置 LNMP

    首先更新系统软件 $ yum update 安装nginx 1.安装nginx源 $ yum localinstall http://nginx.org/packages/centos/7/noarc ...

  6. ZOJ 1610 Count the Colors (线段树区间更新与统计)

    Painting some colored segments on a line, some previously painted segments may be covered by some th ...

  7. 2019牛客多校第五场 B - generator 1 矩阵快速幂+十倍增+二进制倍增优化

    B - generator 1 题意 给你\(x_{0}.x_{1}.a.b.b.mod\),根据\(x_{i} = a*x_{i-1} + b*x_{i-2}\)求出\(x_{n}\) 思路 一般看 ...

  8. Database基础(一):构建MySQL服务器、 数据库基本管理 、MySQL 数据类型、表结构的调整

    一.构建MySQL服务器 目标: 本案例要求熟悉MySQL官方安装包的使用,快速构建一台数据库服务器: 安装MySQL-server.MySQl-client软件包 修改数据库用户root的密码 确认 ...

  9. 大碗宽面Beta迭代阶段第十二周会议记录

    本周一晚上我们在熟悉的宿舍楼一楼大厅进行了本周的小组会议. 对于上周的任务,前端的同学修改统一了导航栏和footer,在课程评价界面中添加了“添加评论”功能,其中含有,是否修改过该课程的单选框,评论, ...

  10. 在ios微信中提交form,php端收不到参数的问题

    今天做h5页面时,微信浏览器中提交form表单,发现php端收不到post过来的参数,在普通浏览器中可以,安卓微信也可以,$_POST,$_GET,$_REQUEST等方式都不行. 后来,把form表 ...