模数是998244353的话好像NTT可以更快。

#include<bits/stdc++.h>
using namespace std;
typedef long long ll;
const int MAXN = 3e5 + 51, MOD = 998244353, G = 3, INVG = 332748118;
int exponent, fd, cnt = 1, limit = -1, rres, ptr;
int rev[MAXN], f[MAXN], g[MAXN], tmp[MAXN], tmp2[MAXN], tmp3[MAXN], tbm[MAXN];
int res[MAXN], base[MAXN], fail[MAXN];
ll delta[MAXN]; inline int read() {
int num = 0;
bool neg = false;
char ch = getchar();
while(!isdigit(ch) && ch != '-')
ch = getchar();
if(ch == '-')
neg = true, ch = getchar();
while(isdigit(ch))
num = (num << 3) + (num << 1) + (ch - '0'), ch = getchar();
return neg ? -num : num;
} inline int qpow(ll x, int n) {
ll res = 1;
for(; n; x = x * x % MOD, n >>= 1)
if(n & 1)
res = res * x % MOD;
return res;
} inline void NTT(int *cp, int cnt, int inv) {
int cur = 0, res = 0;
for(int i = 0; i < cnt; i++)
if(i < rev[i])
swap(cp[i], cp[rev[i]]); for(int i = 2; i <= cnt; i <<= 1) {
cur = i >> 1, res = qpow(inv == 1 ? G : INVG, (MOD - 1) / i);
for(int *p = cp; p != cp + cnt; p += i) {
ll w = 1;
for(int j = 0; j < cur; j++) {
int t = w * p[j + cur] % MOD, t2 = p[j];
p[j + cur] = (t2 - t + MOD) % MOD, p[j] = (t2 + t) % MOD;
w = w * res % MOD;
}
}
} if(inv == -1) {
int invl = qpow(cnt, MOD - 2);
for(int i = 0; i <= cnt; i++)
cp[i] = (ll) cp[i] * invl % MOD;
}
} inline void inv(int fd, int *f, int *res) {
static int tmp[MAXN];
if(fd == 1) {
res[0] = qpow(f[0], MOD - 2);
return;
}
inv((fd + 1) >> 1, f, res);
int cnt = 1, limit = -1;
while(cnt < (fd << 1))
cnt <<= 1, limit++;
for(int i = 0; i < cnt; i++) {
tmp[i] = i < fd ? f[i] : 0;
rev[i] = (rev[i >> 1] >> 1) | ((i & 1) << limit);
}
NTT(tmp, cnt, 1), NTT(res, cnt, 1);
for(int i = 0; i < cnt; i++)
res[i] = 1ll * (2 - 1ll * tmp[i] * res[i] % MOD + MOD) % MOD * res[i] % MOD;
NTT(res, cnt, -1);
for(int i = fd; i < cnt; i++)
res[i] = 0;
} inline void mod(int *f) {
static int tmp[MAXN], q[MAXN];
int deg = fd << 1;
while(!f[--deg]);
if(deg < fd)
return; for(int i = 0; i < cnt; i++)
tmp[i] = i <= deg ? f[i] : 0;
reverse(tmp, tmp + 1 + deg);
for(int i = deg + 1 - fd; i <= deg; tmp[i] = 0, i++);
NTT(tmp, cnt, 1);
for(int i = 0; i < cnt; q[i] = (ll)tmp[i] * tmp3[i] % MOD, i++);
NTT(q, cnt, -1);
for(int i = 0; i < cnt; tmp[i] = 0, q[i] = i <= deg - fd ? q[i] : 0, i++);
reverse(q, q + 1 + deg - fd), NTT(q, cnt, 1);
for(int i = 0; i < cnt; tmp[i] = (ll)q[i] * g[i] % MOD, i++);
NTT(tmp, cnt, -1);
for(int i = 0; i < fd; f[i] = (f[i] - tmp[i] + MOD) % MOD, i++);
for(int i = 0; i < cnt; q[i] = tmp[i] = 0, f[i] = i < fd ? f[i] : 0, i++);
} vector<ll>bmf[MAXN];
inline void BerlekampMassey(int length, int *base, int *res) {
int cur = 0;
for(int i = 1; i <= length; i++) {
ll curr = base[i];
for(int j = 0; j < bmf[cur].size(); j++) {
curr = (curr - (ll)base[i - j - 1] * bmf[cur][j] % MOD) % MOD;
}
delta[i] = curr;
if(!delta[i]) {
continue;
}
fail[cur] = i;
if(!cur) {
bmf[++cur].resize(i), delta[i] = base[i];
continue;
}
int id = cur - 1, x = bmf[id].size() - fail[id] + i;
for(int j = 0; j < cur; j++) {
if(i - fail[j] + bmf[j].size() < x) {
id = j, x = i - fail[j] + bmf[j].size();
}
}
bmf[cur + 1] = bmf[cur], cur++;
while(bmf[cur].size() < x) {
bmf[cur].push_back(0);
}
ll mul = (ll)delta[i] * qpow(delta[fail[id]], MOD - 2) % MOD;
bmf[cur][i - fail[id] - 1] = (ll)(bmf[cur][i - fail[id] - 1] + mul) % MOD;
for(int j = 0; j < bmf[id].size(); j++) {
int t = (ll)mul * bmf[id][j] % MOD;
bmf[cur][i - fail[id] + j] = (bmf[cur][i - fail[id] + j] - t + MOD) % MOD;
}
}
ptr = cur;
for(int i = 0; i < bmf[cur].size(); i++) {
res[i + 1] = (bmf[cur][i] % MOD + MOD) % MOD;
}
}
int main() {
#ifdef Yinku
freopen("Yinku.in", "r", stdin);
#endif // Yinku
fd = read(), exponent = read();
for(int i = 0; i < fd; i++)
tbm[i + 1] = f[i] = (read() + MOD) % MOD; BerlekampMassey(fd, tbm, tmp);
for(int i = 1, ci = bmf[ptr].size(); i <= ci; i++)
printf("%d%c", tmp[i], " \n"[i == ci]); for(int i = 1; i <= fd; g[fd - i] = MOD - tmp[i], i++);
g[fd] = 1;
for(int i = 0; i <= fd; i++)
tmp2[i] = g[i]; reverse(tmp2, tmp2 + 1 + fd), inv(fd << 1, tmp2, tmp3);
for(int i = 0; i <= fd; i++)
tmp2[i] = 0; while(cnt < (fd << 2))
cnt <<= 1, limit++; for(int i = 0; i < cnt; i++)
rev[i] = (rev[i >> 1] >> 1) | ((i & 1) << limit); NTT(g, cnt, 1), NTT(tmp3, cnt, 1), base[1] = res[0] = 1;
while(exponent) {
if(exponent & 1) {
NTT(res, cnt, 1), NTT(base, cnt, 1);
for(int i = 0; i < cnt; i++)
res[i] = (ll)res[i] * base[i] % MOD;
NTT(res, cnt, -1), NTT(base, cnt, -1), mod(res);
}
NTT(base, cnt, 1);
for(int i = 0; i < cnt; i++)
base[i] = (ll)base[i] * base[i] % MOD;
NTT(base, cnt, -1), mod(base), exponent >>= 1;
}
for(int i = 0; i < fd; i++)
rres = (rres + (ll)res[i] * f[i] % MOD) % MOD;
printf("%d\n", rres);
}

模板 - 线性递推BM的更多相关文章

  1. [模板]线性递推+BM

    暴力版本: #include<bits/stdc++.h> #define mod 998244353 using namespace std; typedef long long int ...

  2. LG5487 【模板】线性递推+BM算法

    [模板]线性递推+BM算法 给出一个数列 \(P\) 从 \(0\) 开始的前 \(n\) 项,求序列 \(P\) 在\(\bmod~998244353\) 下的最短线性递推式,并在 \(\bmod~ ...

  3. 线性递推BM模板

    #include <cstdio> #include<iostream> #include <cstring> #include <cmath> #in ...

  4. Berlekamp Massey算法求线性递推式

    BM算法求求线性递推式   P5487 线性递推+BM算法   待AC.   Poor God Water   // 题目来源:ACM-ICPC 2018 焦作赛区网络预赛 题意   God Wate ...

  5. BM求线性递推模板(杜教版)

    BM求线性递推模板(杜教版) BM求线性递推是最近了解到的一个黑科技 如果一个数列.其能够通过线性递推而来 例如使用矩阵快速幂优化的 DP 大概都可以丢进去 则使用 BM 即可得到任意 N 项的数列元 ...

  6. 【模板】BM + CH(线性递推式的求解,常系数齐次线性递推)

    这里所有的内容都将有关于一个线性递推: $f_{n} = \sum\limits_{i = 1}^{k} a_{i} * f_{n - i}$,其中$f_{0}, f_{1}, ... , f_{k ...

  7. HDU - 6172:Array Challenge (BM线性递推)

    题意:给出,三个函数,h,b,a,然后T次询问,每次给出n,求sqrt(an); 思路:不会推,但是感觉a应该是线性的,这个时候我们就可以用BM线性递推,自己求出前几项,然后放到模板里,就可以求了. ...

  8. 2018 焦作网络赛 L Poor God Water ( AC自动机构造矩阵、BM求线性递推、手动构造矩阵、矩阵快速幂 )

    题目链接 题意 : 实际上可以转化一下题意 要求求出用三个不同元素的字符集例如 { 'A' .'B' .'C' } 构造出长度为 n 且不包含 AAA.BBB CCC.ACB BCA.CAC CBC ...

  9. 牛客多校第九场 A The power of Fibonacci 杜教bm解线性递推

    题意:计算斐波那契数列前n项和的m次方模1e9 题解: $F[i] – F[i-1] – F[i-2] = 0$ $F[i]^2 – 2 F[i-1]^2 – 2 F[i-2]^2 + F[i-3] ...

随机推荐

  1. NOIP2016 D1T1 玩具谜题

    洛谷P1563 看完了noip2017觉得noip2016是真的简单……2017第一题就卡住2016第一题10分钟AC 思路: m<=100000很明显暴力模拟就可以 唯一有一点点难度的地方就是 ...

  2. linux文件系统的类型

    文件系统的类型 兄弟连介绍-Linux有四种基本文件系统类型:普通文件.目录文件.连接文件和特殊文件,可用file命令来识别. 普通文件:如文本文件.C语言元代码.SHELL脚本.二进制的可执行文件等 ...

  3. BZOJ 3319: 黑白树 并查集 + 离线 + 思维

    Description 给定一棵树,边的颜色为黑或白,初始时全部为白色.维护两个操作: 1.查询u到根路径上的第一条黑色边的标号. 2.将u到v    路径上的所有边的颜色设为黑色. Notice:这 ...

  4. POJ 2104 K-th Number ( 求取区间 K 大值 || 主席树 || 离线线段树)

    题意 : 给出一个含有 N 个数的序列,然后有 M 次问询,每次问询包含 ( L, R, K ) 要求你给出 L 到 R 这个区间的第 K 大是几 分析 : 求取区间 K 大值是个经典的问题,可以使用 ...

  5. 拓展KMP以及模板

    废话不多说,上模板 #include<bits/stdc++.h> ; int Next[maxn], extend[maxn], moL, strL;///Next数组.extend数组 ...

  6. CentOS 6 修改时间和时区及设置修改及时间同步

    一.时区 date -R; date ; hwclock --show ; ps -ef|grep ntpd 显示时区 date --help 获取帮助 date -R date +%z 上面两个命令 ...

  7. 13-1 jquery操作cookie

    jQuery之cookie操作 Cookies 定义:让网站服务器把少量数据存储到客户端的硬盘或内存,从客户端的硬盘里读取数据的一种技术; 下载与引入:jquery.cookie.js基于jquery ...

  8. linux 下 一步一步安装odb

    Introduction This guide presents step-by-step instructions for installing the ODB system on UNIX-lik ...

  9. Flashtext:大规模数据清洗的利器

    Flashtext:大规模数据清洗的利器 在这篇文章中,我们将介绍一种新的关键字搜索和替换的算法:Flashtext 算法.Flashtext 算法是一个高效的字符搜索和替换算法.该算法的时间复杂度不 ...

  10. BBED ORA-00600: internal error code, arguments: [16703], [1403], [20], [], [], [], [], [], [], [], [], []

    BBED模拟并修复 删除:$ORACLE_HOME/rdbms/admin/prvtsupp.plb SQL> alter database open;alter database open*E ...