1 scikit-learn基础介绍

1.1 估计器(Estimator)

估计器,很多时候可以直接理解成分类器,主要包含两个函数:

  • fit():训练算法,设置内部参数。接收训练集和类别两个参数。
  • predict():预测测试集类别,参数为测试集。
    大多数scikit-learn估计器接收和输出的数据格式均为numpy数组或类似格式。

1.2 转换器(Transformer)

转换器用于数据预处理和数据转换,主要是三个方法:

  • fit():训练算法,设置内部参数。
  • transform():数据转换。
  • fit_transform():合并fit和transform两个方法。

1.3 流水线(Pipeline)

sklearn.pipeline

流水线的功能:

  • 跟踪记录各步骤的操作(以方便地重现实验结果)
  • 对各步骤进行一个封装
  • 确保代码的复杂程度不至于超出掌控范围

基本使用方法

流水线的输入为一连串的数据挖掘步骤,其中最后一步必须是估计器,前几步是转换器。输入的数据集经过转换器的处理后,输出的结果作为下一步的输入。最后,用位于流水线最后一步的估计器对数据进行分类。
每一步都用元组( ‘名称’,步骤)来表示。现在来创建流水线。

scaling_pipeline = Pipeline([
('scale', MinMaxScaler()),
('predict', KNeighborsClassifier())
])

1.4 预处理

主要在sklearn.preprcessing包下。

规范化:

  • MinMaxScaler :最大最小值规范化
  • Normalizer :使每条数据各特征值的和为1
  • StandardScaler :为使各特征的均值为0,方差为1

编码:

  • LabelEncoder :把字符串类型的数据转化为整型
  • OneHotEncoder :特征用一个二进制数字来表示
  • Binarizer :为将数值型特征的二值化
  • MultiLabelBinarizer:多标签二值化

1.5 特征

1.5.1 特征抽取

包:sklearn.feature_extraction
特征抽取是数据挖掘任务最为重要的一个环节,一般而言,它对最终结果的影响要高过数据挖掘算法本身。只有先把现实用特征表示出来,才能借助数据挖掘的力量找到问题的答案。特征选择的另一个优点在于:降低真实世界的复杂度,模型比现实更容易操纵。
一般最常使用的特征抽取技术都是高度针对具体领域的,对于特定的领域,如图像处理,在过去一段时间已经开发了各种特征抽取的技术,但这些技术在其他领域的应用却非常有限。

  • DictVectorizer: 将dict类型的list数据,转换成numpy array
  • FeatureHasher : 特征哈希,相当于一种降维技巧
  • image:图像相关的特征抽取
  • text: 文本相关的特征抽取
  • text.CountVectorizer:将文本转换为每个词出现的个数的向量
  • text.TfidfVectorizer:将文本转换为tfidf值的向量
  • text.HashingVectorizer:文本的特征哈希

示例

 
data.png

CountVectorize只数出现个数

 
count.png
 
hash.png

TfidfVectorizer:个数+归一化(不包括idf)

 
tfidf(without idf).png

1.5.2 特征选择

包:sklearn.feature_selection
特征选择的原因如下:
(1)降低复杂度
(2)降低噪音
(3)增加模型可读性

  • VarianceThreshold: 删除特征值的方差达不到最低标准的特征
  • SelectKBest: 返回k个最佳特征
  • SelectPercentile: 返回表现最佳的前r%个特征

单个特征和某一类别之间相关性的计算方法有很多。最常用的有卡方检验(χ2)。其他方法还有互信息和信息熵。

  • chi2: 卡方检验(χ2)

1.6 降维

包:sklearn.decomposition

  • 主成分分析算法(Principal Component Analysis, PCA)的目的是找到能用较少信息描述数据集的特征组合。它意在发现彼此之间没有相关性、能够描述数据集的特征,确切说这些特征的方差跟整体方差没有多大差距,这样的特征也被称为主成分。这也就意味着,借助这种方法,就能通过更少的特征捕获到数据集的大部分信息。

1.7 组合

包:**sklearn.ensemble **
组合技术即通过聚集多个分类器的预测来提高分类准确率。
常用的组合分类器方法:
(1)通过处理训练数据集。即通过某种抽样分布,对原始数据进行再抽样,得到多个训练集。常用的方法有装袋(bagging)和提升(boosting)。
(2)通过处理输入特征。即通过选择输入特征的子集形成每个训练集。适用于有大量冗余特征的数据集。随机森林(Random forest)就是一种处理输入特征的组合方法。
(3)通过处理类标号。适用于多分类的情况,将类标号随机划分成两个不相交的子集,再把问题变为二分类问题,重复构建多次模型,进行分类投票。

  • BaggingClassifier: Bagging分类器组合
  • BaggingRegressor: Bagging回归器组合
  • AdaBoostClassifier: AdaBoost分类器组合
  • AdaBoostRegressor: AdaBoost回归器组合
  • GradientBoostingClassifier:GradientBoosting分类器组合
  • GradientBoostingRegressor: GradientBoosting回归器组合
  • ExtraTreeClassifier:ExtraTree分类器组合
  • ExtraTreeRegressor: ExtraTree回归器组合
  • RandomTreeClassifier:随机森林分类器组合
  • RandomTreeRegressor: 随机森林回归器组合

使用举例

AdaBoostClassifier(DecisionTreeClassifier(max_depth=1),
algorithm="SAMME",
n_estimators=200)

解释
装袋(bagging):根据均匀概率分布从数据集中重复抽样(有放回),每个自助样本集和原数据集一样大,每个自助样本集含有原数据集大约63%的数据。训练k个分类器,测试样本被指派到得票最高的类。
提升(boosting):通过给样本设置不同的权值,每轮迭代调整权值。不同的提升算法之间的差别,一般是(1)如何更新样本的权值,(2)如何组合每个分类器的预测。其中Adaboost中,样本权值是增加那些被错误分类的样本的权值,分类器C_i的重要性依赖于它的错误率。
Boosting主要关注降低偏差,因此Boosting能基于泛化性能相当弱的学习器构建出很强的集成;Bagging主要关注降低方差,因此它在不剪枝的决策树、神经网络等学习器上效用更为明显。偏差指的是算法的期望预测与真实预测之间的偏差程度,反应了模型本身的拟合能力;方差度量了同等大小的训练集的变动导致学习性能的变化,刻画了数据扰动所导致的影响。

1.8 模型评估(度量)

包:sklearn.metrics
sklearn.metrics包含评分方法、性能度量、成对度量和距离计算。
分类结果度量
参数大多是y_true和y_pred。

  • accuracy_score:分类准确度
  • condusion_matrix :分类混淆矩阵
  • classification_report:分类报告
  • precision_recall_fscore_support:计算精确度、召回率、f、支持率
  • jaccard_similarity_score:计算jcaard相似度
  • hamming_loss:计算汉明损失
  • zero_one_loss:0-1损失
  • hinge_loss:计算hinge损失
  • log_loss:计算log损失

其中,F1是以每个类别为基础进行定义的,包括两个概念:准确率(precision)和召回率(recall)。准确率是指预测结果属于某一类的个体,实际属于该类的比例。召回率是被正确预测为某类的个体,与数据集中该类个体总数的比例。F1是准确率和召回率的调和平均数。

回归结果度量

  • explained_varicance_score:可解释方差的回归评分函数
  • mean_absolute_error:平均绝对误差
  • mean_squared_error:平均平方误差

多标签的度量

  • coverage_error:涵盖误差
  • label_ranking_average_precision_score:计算基于排名的平均误差Label ranking average precision (LRAP)

聚类的度量

  • adjusted_mutual_info_score:调整的互信息评分
  • silhouette_score:所有样本的轮廓系数的平均值
  • silhouette_sample:所有样本的轮廓系数

1.9 交叉验证

包:sklearn.cross_validation

  • KFold:K-Fold交叉验证迭代器。接收元素个数、fold数、是否清洗
  • LeaveOneOut:LeaveOneOut交叉验证迭代器
  • LeavePOut:LeavePOut交叉验证迭代器
  • LeaveOneLableOut:LeaveOneLableOut交叉验证迭代器
  • LeavePLabelOut:LeavePLabelOut交叉验证迭代器

LeaveOneOut(n) 相当于 KFold(n, n_folds=n) 相当于LeavePOut(n, p=1)。
LeaveP和LeaveOne差别在于leave的个数,也就是测试集的尺寸。LeavePLabel和LeaveOneLabel差别在于leave的Label的种类的个数。
LeavePLabel这种设计是针对可能存在第三方的Label,比如我们的数据是一些季度的数据。那么很自然的一个想法就是把1,2,3个季度的数据当做训练集,第4个季度的数据当做测试集。这个时候只要输入每个样本对应的季度Label,就可以实现这样的功能。
以下是实验代码,尽量自己多实验去理解。

#coding=utf-8
import numpy as np
import sklearnfrom sklearn
import cross_validation
X = np.array([[1, 2], [3, 4], [5, 6], [7, 8],[9, 10]])
y = np.array([1, 2, 1, 2, 3])
def show_cross_val(method):
if method == "lolo":
labels = np.array(["summer", "winter", "summer", "winter", "spring"])
cv = cross_validation.LeaveOneLabelOut(labels)
elif method == 'lplo':
labels = np.array(["summer", "winter", "summer", "winter", "spring"])
cv = cross_validation.LeavePLabelOut(labels,p=2)
elif method == 'loo':
cv = cross_validation.LeaveOneOut(n=len(y))
elif method == 'lpo':
cv = cross_validation.LeavePOut(n=len(y),p=3)
for train_index, test_index in cv:
print("TRAIN:", train_index, "TEST:", test_index)
X_train, X_test = X[train_index], X[test_index]
y_train, y_test = y[train_index], y[test_index]
print "X_train: ",X_train
print "y_train: ", y_train
print "X_test: ",X_test
print "y_test: ",y_test
if __name__ == '__main__':
show_cross_val("lpo")

常用方法

  • train_test_split:分离训练集和测试集(不是K-Fold)
  • cross_val_score:交叉验证评分,可以指认cv为上面的类的实例
  • cross_val_predict:交叉验证的预测。

1.10 网格搜索

包:sklearn.grid_search
网格搜索最佳参数

  • GridSearchCV:搜索指定参数网格中的最佳参数
  • ParameterGrid:参数网格
  • ParameterSampler:用给定分布生成参数的生成器
  • RandomizedSearchCV:超参的随机搜索
    通过best_estimator_.get_params()方法,获取最佳参数。

1.11 多分类、多标签分类

包:sklearn.multiclass

  • OneVsRestClassifier:1-rest多分类(多标签)策略
  • OneVsOneClassifier:1-1多分类策略
  • OutputCodeClassifier:1个类用一个二进制码表示
    示例代码
#coding=utf-8
from sklearn import metrics
from sklearn import cross_validation
from sklearn.svm import SVC
from sklearn.multiclass import OneVsRestClassifier
from sklearn.preprocessing import MultiLabelBinarizer
import numpy as np
from numpy import random
X=np.arange(15).reshape(5,3)
y=np.arange(5)
Y_1 = np.arange(5)
random.shuffle(Y_1)
Y_2 = np.arange(5)
random.shuffle(Y_2)
Y = np.c_[Y_1,Y_2]
def multiclassSVM():
X_train, X_test, y_train, y_test = cross_validation.train_test_split(X, y, test_size=0.2,random_state=0)
model = OneVsRestClassifier(SVC())
model.fit(X_train, y_train)
predicted = model.predict(X_test)
print predicted
def multilabelSVM():
Y_enc = MultiLabelBinarizer().fit_transform(Y)
X_train, X_test, Y_train, Y_test = cross_validation.train_test_split(X, Y_enc, test_size=0.2, random_state=0)
model = OneVsRestClassifier(SVC())
model.fit(X_train, Y_train)
predicted = model.predict(X_test)
print predicted
if __name__ == '__main__':
multiclassSVM()
# multilabelSVM()

上面的代码测试了svm在OneVsRestClassifier的包装下,分别处理多分类和多标签的情况。特别注意,在多标签的情况下,输入必须是二值化的。所以需要MultiLabelBinarizer()先处理。

2 具体模型

2.1 朴素贝叶斯(Naive Bayes)

包:sklearn.cross_validation

 
朴素贝叶斯.png

朴素贝叶斯的特点是分类速度快,分类效果不一定是最好的。

  • GasussianNB:高斯分布的朴素贝叶斯
  • MultinomialNB:多项式分布的朴素贝叶斯
  • BernoulliNB:伯努利分布的朴素贝叶斯

所谓使用什么分布的朴素贝叶斯,就是假设P(x_i|y)是符合哪一种分布,比如可以假设其服从高斯分布,然后用最大似然法估计高斯分布的参数。

 
高斯分布.png
 
多项式分布.png
 
伯努利分布.png

3 scikit-learn扩展

3.0 概览

具体的扩展,通常要继承sklearn.base包下的类。

  • BaseEstimator: 估计器的基类
  • ClassifierMixin :分类器的混合类
  • ClusterMixin:聚类器的混合类
  • RegressorMixin :回归器的混合类
  • TransformerMixin :转换器的混合类

关于什么是Mixin(混合类),具体可以看这个知乎链接。简单地理解,就是带有实现方法的接口,可以将其看做是组合模式的一种实现。举个例子,比如说常用的TfidfTransformer,继承了BaseEstimator, TransformerMixin,因此它的基本功能就是单一职责的估计器和转换器的组合。

3.1 创建自己的转换器

在特征抽取的时候,经常会发现自己的一些数据预处理的方法,sklearn里可能没有实现,但若直接在数据上改,又容易将代码弄得混乱,难以重现实验。这个时候最好自己创建一个转换器,在后面将这个转换器放到pipeline里,统一管理。
例如《Python数据挖掘入门与实战》书中的例子,我们想接收一个numpy数组,根据其均值将其离散化,任何高于均值的特征值替换为1,小于或等于均值的替换为0。
代码实现:

from sklearn.base import TransformerMixin
from sklearn.utils import as_float_array class MeanDiscrete(TransformerMixin): #计算出数据集的均值,用内部变量保存该值。
def fit(self, X, y=None):
X = as_float_array(X)
self.mean = np.mean(X, axis=0)
#返回self,确保在转换器中能够进行链式调用(例如调用transformer.fit(X).transform(X))
return self def transform(self, X):
X = as_float_array(X)
assert X.shape[1] == self.mean.shape[0]
return X > self.mean

作者:Cer_ml
链接:https://www.jianshu.com/p/516f009c0875
來源:简书
简书著作权归作者所有,任何形式的转载都请联系作者获得授权并注明出处。

[转]Scikit-learn使用总结的更多相关文章

  1. scikit learn 模块 调参 pipeline+girdsearch 数据举例:文档分类 (python代码)

    scikit learn 模块 调参 pipeline+girdsearch 数据举例:文档分类数据集 fetch_20newsgroups #-*- coding: UTF-8 -*- import ...

  2. (原创)(三)机器学习笔记之Scikit Learn的线性回归模型初探

    一.Scikit Learn中使用estimator三部曲 1. 构造estimator 2. 训练模型:fit 3. 利用模型进行预测:predict 二.模型评价 模型训练好后,度量模型拟合效果的 ...

  3. (原创)(四)机器学习笔记之Scikit Learn的Logistic回归初探

    目录 5.3 使用LogisticRegressionCV进行正则化的 Logistic Regression 参数调优 一.Scikit Learn中有关logistics回归函数的介绍 1. 交叉 ...

  4. Scikit Learn: 在python中机器学习

    转自:http://my.oschina.net/u/175377/blog/84420#OSC_h2_23 Scikit Learn: 在python中机器学习 Warning 警告:有些没能理解的 ...

  5. Scikit Learn

    Scikit Learn Scikit-Learn简称sklearn,基于 Python 语言的,简单高效的数据挖掘和数据分析工具,建立在 NumPy,SciPy 和 matplotlib 上.

  6. Linear Regression with Scikit Learn

    Before you read  This is a demo or practice about how to use Simple-Linear-Regression in scikit-lear ...

  7. 如何使用scikit—learn处理文本数据

    答案在这里:http://www.tuicool.com/articles/U3uiiu http://scikit-learn.org/stable/modules/feature_extracti ...

  8. Query意图分析:记一次完整的机器学习过程(scikit learn library学习笔记)

    所谓学习问题,是指观察由n个样本组成的集合,并根据这些数据来预测未知数据的性质. 学习任务(一个二分类问题): 区分一个普通的互联网检索Query是否具有某个垂直领域的意图.假设现在有一个O2O领域的 ...

  9. 机器学习框架Scikit Learn的学习

    一   安装 安装pip 代码如下:# wget "https://pypi.python.org/packages/source/p/pip/pip-1.5.4.tar.gz#md5=83 ...

  10. Python第三方库(模块)"scikit learn"以及其他库的安装

    scikit-learn是一个用于机器学习的 Python 模块. 其主页:http://scikit-learn.org/stable/. GitHub地址: https://github.com/ ...

随机推荐

  1. CodeForces 877E DFS序+线段树

    CodeForces 877E DFS序+线段树 题意 就是树上有n个点,然后每个点都有一盏灯,给出初始的状态,1表示亮,0表示不亮,然后有两种操作,第一种是get x,表示你需要输出x的子树和x本身 ...

  2. C++ 函数返回对象时并没有调用拷贝构造函数

    #include <iostream> #include <vector> #include <string.h> using namespace std; cla ...

  3. HDU 6538 Neko and quadrilateral(极角排序+旋转坐标系)

    这道题简直太好了,对于计算几何选手需要掌握的一个方法. 首先对于求解四边形面积,我们可以将四边形按对角线划分成两个三角形,显然此时四边形的面积最大最小值就变成了求解里这个对角线最近最远的点对. 对于此 ...

  4. 待补 http://acm.hdu.edu.cn/showproblem.php?pid=6602

    http://acm.hdu.edu.cn/showproblem.php?pid=6602 终于能够看懂的题解: https://blog.csdn.net/qq_40871466/article/ ...

  5. Kafka DockerFile

    FROM php:5.6.38-fpm COPY . /alidata/workerspace WORKDIR /alidata/workerspace RUN set -x && a ...

  6. 解决pip源问题 安装不了第三方库问题

    1. 参考链接: https://www.biaodianfu.com/python-pip.html http://blog.csdn.net/u012450329/article/details/ ...

  7. 数据分析之pandas(1)

    一.Pandas的数据结构 1.Series (1)类似于一维数组 (2)通过list构建Series ser_obj=pd.Series(range(10)) (3)pandas数据结构案例

  8. vue - 过滤器filter的基本使用

    1.全局过滤器 输出: 过滤器可以多次来调用 输出: 2.私有过滤器 <!DOCTYPE html> <html lang="en"> <head&g ...

  9. 2019-3-1-C#-json-转-xml-字符串

    title author date CreateTime categories C# json 转 xml 字符串 lindexi 2019-03-01 09:20:24 +0800 2019-1-1 ...

  10. 【LeetCode】按 tag 分类索引 (900题以下)

    链表:https://www.cnblogs.com/zhangwanying/p/9797184.html (共34题) 数组:https://www.cnblogs.com/zhangwanyin ...