题面

Dilworth定理在数学理论中的序理论与组合数学中,Dilworth定理根据序列划分的最小数量的链描述了任何有限偏序集的宽度。

反链是一种偏序集,其任意两个元素不可比;而链则是一种任意两个元素可比的偏序集。Dilworth定理说明,存在一个反链A与一个将序列划分为链族P的划分,使得划分中链的数量等于集合A的基数。当存在这种情况时,对任何至多能包含来自P中每一个成员一个元素的反链,A一定是此序列中的最大反链。同样地,对于任何最少包含A中的每一个元素的一个链的划分,P也一定是序列可以划分出的最小链族。偏序集的宽度被定义为A与P的共同大小。

另一种Dilworth定理的等价表述是:在有穷偏序集中,任何反链最大元素数目等于任何将集合到链的划分中链的最小数目。一个关于无限偏序集的理论指出,在此种情况下,一个偏序集具有有限的宽度w,当且仅当它可以划分为最少w条链。

对于dilworth定理,我的理解就是:
在一个序列中 最长下降子序列的个数(下降子序列的最小划分)就等于其最长不下降子序列的长度
#include <bits/stdc++.h>
#pragma GCC optimize(2)
using namespace std;
struct haha{
int a;
int b;
}lala[];
int n;
inline bool cmp(haha x,haha y)
{
if(x.a==y.a) return x.b>y.b;
return x.a>y.a;
}
int c[];
inline int lowbit(register int x)
{
return x&(-x);
}
int maxn;
inline int ask(register int x)
{
register int res=;
while(x>){
if(res<c[x]){
res=c[x];
}
x-=lowbit(x);
}
return res;
}
inline void add(register int x,register int v)
{
while(x<=maxn){
c[x]=max(c[x],v);
x+=lowbit(x);
}
}
int main()
{
cin>>n;
for(register int i=;i<=n;i++){
scanf("%d%d",&lala[i].a,&lala[i].b);
maxn=max(maxn,lala[i].b);
}
sort(lala+,lala++n,cmp);
register int ans=;
for(register int i=;i<=n;i++){
register int j=ask(lala[i].b)+;
ans=max(ans,j);
add(lala[i].b+,j);
}
cout<<ans;
}

洛谷 P1233 木棍加工 题解的更多相关文章

  1. 洛谷P1233 木棍加工题解 LIS

    突然发现自己把原来学的LIS都忘完了,正好碰见这一道题.|-_-| \(LIS\),也就是最长上升子序列,也就是序列中元素严格单调递增,这个东西有\(n^{2}\)和\(nlog_{2}n\)两种算法 ...

  2. 洛谷 P1233 木棍加工 解题报告

    P1233 木棍加工 题目描述 一堆木头棍子共有n根,每根棍子的长度和宽度都是已知的.棍子可以被一台机器一个接一个地加工.机器处理一根棍子之前需要准备时间.准备时间是这样定义的: 第一根棍子的准备时间 ...

  3. 洛谷P1233 木棍加工【单调栈】

    题目:https://www.luogu.org/problemnew/show/P1233 题意: 有n根木棍,每根木棍有长度和宽度. 现在要求按某种顺序加工木棍,如果前一根木棍的长度和宽度都大于现 ...

  4. 洛谷 P1233 木棍加工

    题目描述 一堆木头棍子共有n根,每根棍子的长度和宽度都是已知的.棍子可以被一台机器一个接一个地加工.机器处理一根棍子之前需要准备时间.准备时间是这样定义的: 第一根棍子的准备时间为1分钟: 如果刚处理 ...

  5. 洛谷P1233 [木棍加工]

    主要思路: 这道题一眼看过去就可以贪心.. 首先可以按L排序.. 显然排序之后我们就可以抛开L不管了.. 然后就可以愉快的贪心了.. 细节: 这道题可以看成用 最少的合法序列(详见原题) 装下所有木棍 ...

  6. 「洛谷P1233」木棍加工 解题报告

    P1233 木棍加工 题目描述 一堆木头棍子共有n根,每根棍子的长度和宽度都是已知的.棍子可以被一台机器一个接一个地加工.机器处理一根棍子之前需要准备时间.准备时间是这样定义的: 第一根棍子的准备时间 ...

  7. 洛谷P2832 行路难 分析+题解代码【玄学最短路】

    洛谷P2832 行路难 分析+题解代码[玄学最短路] 题目背景: 小X来到了山区,领略山林之乐.在他乐以忘忧之时,他突然发现,开学迫在眉睫 题目描述: 山区有n座山.山之间有m条羊肠小道,每条连接两座 ...

  8. 【洛谷P3960】列队题解

    [洛谷P3960]列队题解 题目链接 题意: Sylvia 是一个热爱学习的女孩子. 前段时间,Sylvia 参加了学校的军训.众所周知,军训的时候需要站方阵. Sylvia 所在的方阵中有 n×m ...

  9. P1233 木棍加工

    P1233 木棍加工 题目描述 一堆木头棍子共有n根,每根棍子的长度和宽度都是已知的.棍子可以被一台机器一个接一个地加工.机器处理一根棍子之前需要准备时间.准备时间是这样定义的: 第一根棍子的准备时间 ...

随机推荐

  1. 网页“console”输出图文信息

    http://www.monmonkey.com/javascript/jiben2.html 参考以上链接中的转义字符使用. http://www.cnblogs.com/Wayou/p/chrom ...

  2. Springboot 默认静态路径

    springboot 默认静态路径 代码如下所示 类ResourceProperties.class private static final String[] CLASSPATH_RESOURCE_ ...

  3. Pollard-rho算法[因子分解算法]

    试除法:最简单的因数分解算法,从$ 2 $到$ \sqrt n $一个一个试. 试除法(改进):从$ 2 $到$ \sqrt n $挑素数一个一个试. 然而这样复杂度是相当高的. 生日悖论:指如果一个 ...

  4. Linux系统下MySql表名大小写敏感问题

    mysql是通过lower_case_table_names变量来处理大小写问题的. 首先查询该变量 mysql在Linux下数据库名.表名.列名.表别名大小写规则如下: 1.数据库名与表名严格区分大 ...

  5. C++入门经典-例5.5-空类型指针的使用

    1:代码如下: // 5.5.cpp : 定义控制台应用程序的入口点. // #include "stdafx.h" #include <iostream> using ...

  6. dubbo源码阅读笔记-如何引用远程服务,变成invoker

    1 消费端如何通过注册中心获取远程服务的invoker? RegistryDirectory.subscribe从注册中心中获取provider的url,通过DubboProtocol的refer方法 ...

  7. TCP之LAST_ACK状态

    前提: A:主动关闭: B:被动关闭: A执行主动关闭,发送FIN,B收到FIN,发送ACK,进入CLOSE_WAIT,B发送FIN,进入LAST_ACK等待最后一个ACK到来: 关闭方式: (1) ...

  8. LeetCode 34. 搜索范围(search for a range)

    题目描述 给定一个按照升序排列的整数数组 nums,和一个目标值 target.找出给定目标值在数组中的开始位置和结束位置. 你的算法时间复杂度必须是 O(log n) 级别. 如果数组中不存在目标值 ...

  9. 字符串 kotlin(6)

    字符串用 String 类型表示.字符串是不可变的. 字符串的元素——字符可以使用索引运算符访问: s[i] . 可以用 for 循环迭代字符串: for (c in str) { println(c ...

  10. 托管C++中System::String^ 转换为 char*

    https://docs.microsoft.com/en-us/cpp/dotnet/how-to-convert-system-string-to-standard-string?view=vs- ...