【题目链接luogu】

此题在luogu上模数是2015,考试题的模数是2012。

然后这道题听说好多人是打表找规律的(就像7.9T2一样)(手动滑稽_gc)

另外手动

sy,每次测试都无意之间bibi正解,然后说自己是不会做是个什么骚气操作。

所以我们来看真.题解;

SOLUTION:

首先,输入莫得什么好说的;

当然想用快读咱也拦不住(就是想用咬我啊);

咱可能最近因为学长讲了一道DP,印象比较深刻,所以咱居然看到这道题就想到正解应该是DP了!?

接下来就是设计DP状态了:

dp[i][j]表示i个数,恰有j个‘<’的排列方案数;

转移就很神奇很有意思了:

当我们已知dp[1~i-1][1~k]时,我们考虑求dp[i][j];

当数从i-1~i时,显然数列增加的数是大于1~i-1的(莫得因为什么,不好解释,感性理解);我们考虑把i这个数加在哪里:

①加在序列的最左侧:

因为i>1~i-1的任何一个数,所以一定是‘>’,因此对‘<’的多少没有影响;

②加在序列最右侧:

同理因为i>1~i-1任何一个数,所以当将i放在序列最右侧时,一定会增加一个‘<’;

③加在一个‘<’的中间:

实际上不会增加‘<’,因此不会对答案产生影响qwq;

④加在一个‘>’中间:

增加了一只‘<’。

所以由此我们可以推出状态转移方程:

当i加在第①③种情况时,不会产生新的‘<’,因此我们需要由dp[i-1][j]推过来。

可以计算1~i-1的序列中,共有j个‘<’号,然后还有①情况中的一种,共有j+1种情况是添加后不增加‘<’的,所以dp[i][j]+=dp[i-1][j]*(j+1);

当i加在第②④种情况时,会产生新的'<',因此我们也需要由dp[i-1][j-1]推得:

④情况:我们知道当前情况下1~i-1中共有j-1个‘>’,总共的符号数为i-2个,因此其中‘>’数为i-2-(j-1)=i-j-1个,再加上②情况的一种,所以共有i-j个可以产生一个新的‘<’;因此dp[i][j]+=dp[i-1][j-1]*(i-j);

转移方程:dp[i][j]=dp[i-1][j]*(j+1)+dp[i-1][j-1]*(i-j);//注意取模

然后是初始状态:

当我们有0个‘<’时,无论有几个数,这些数必须严格升序排列,也就是只有一种排列是满足有0个‘<’的;因此初始化:dp[1~n][0]=1;

最后的答案显然就是dp[n][k]了;

CODE:

#include<bits/stdc++.h>

using namespace std;

int n,k;
int dp[][]; int main(){
scanf("%d %d",&n,&k);
for(int i=;i<=n;i++) dp[i][]=;
for(int i=;i<=n;i++){
for(int j=;j<=k;j++){
dp[i][j]=(dp[i-][j]*(j+)%2015+dp[i-][j-]*(i-j)%2015)%2015;
}
}
printf("%d",dp[n][k]);
return ;
}

end-

【7.10校内test】T2不等数列的更多相关文章

  1. [模拟赛] T2 不等数列

    Description 将1到n任意排列,然后在排列的每两个数之间根据他们的大小关系插入">"和"<".问在所有排列中,有多少个排列恰好有k个&qu ...

  2. Codevs 4357 不等数列

    不等数列 [题目描述] 将1到n任意排列,然后在排列的每两个数之间根据他们的大小关系插入“>”和“<”.问在所有排列中,有多少个排列恰好有k个“<”.答案对2012取模. [输入格式 ...

  3. 模拟赛 Problem 2 不等数列(num.cpp/c/pas)

    Problem 2 不等数列(num.cpp/c/pas) [题目描述] 将1到n任意排列,然后在排列的每两个数之间根据他们的大小关系插入“>”和“<”.问在所有排列中,有多少个排列恰好有 ...

  4. 【剑指offer】面试题 10. 斐波那契数列

    面试题 10. 斐波那契数列 题目一:求斐波那契数列的第n项 题目描述:求斐波拉契数列的第n项 写出一个函数,输入n,求斐波拉契(Fibonacci)数列的第n项.斐波拉契数列定义如下: C++ 实现 ...

  5. 【6.10校内test】T2 医院设置

    医院设置[题目链接] 感觉我超废 我是一个连floyd都不会写了的灵魂OI选手qwq(考场上写了半天spfa然后写炸了(微笑)) floyd的暴力: 1.先建树:用邻接矩阵存.存之前记得先初始化为IN ...

  6. 剑指offer第二版-10.斐波那契数列

    面试题10:斐波那契数列 题目要求: 求斐波那契数列的第n项的值.f(0)=0, f(1)=1, f(n)=f(n-1)+f(n-2) n>1 思路:使用循环从下往上计算数列. 考点:考察对递归 ...

  7. luogu P2401 不等数列 |动态规划

    题目描述 将1到n任意排列,然后在排列的每两个数之间根据他们的大小关系插入">"和"<".问在所有排列中,有多少个排列恰好有k个"< ...

  8. 洛谷 P2401 不等数列 题解

    每日一题 day25 打卡 Analysis dp[i][j]=dp[i-1][j-1]*(i-j)+dp[i-1][j]*(j+1); 其中i和j是表示前i个数中有j个小于号,j<=i-1 要 ...

  9. P2401 不等数列

    题目描述 将1到n任意排列,然后在排列的每两个数之间根据他们的大小关系插入“>”和“<”.问在所有排列中,有多少个排列恰好有k个“<”.答案对2015取模. 注:1~n的排列指的是1 ...

随机推荐

  1. CF 672C 两个人捡瓶子 最短路与次短路思想

    C. Recycling Bottles time limit per test 2 seconds memory limit per test 256 megabytes input standar ...

  2. Codeforces Round #560 Div. 3

    题目链接:戳我 于是...风浔凌弱菜又去写了一场div.3 总的来说,真的是比较简单.......就是.......不开long long见祖宗 贴上题解-- A 给定一个数,为01串,每次可以翻转一 ...

  3. TCP慢启动

    慢启动定义 慢启动,是传输控制协议使用的一种阻塞控制机制.慢启动也叫做指数增长期.慢启动是指每次TCP接收窗口收到确认时都会增长.增加的大小就是已确认段的数目.这种情况一直保持到要么没有收到一些段,要 ...

  4. R_Studio(学生成绩)绘制频率分布直方图、分布饼图、折线比较图

    对“Gary.csv”中的成绩数据进行分布分析 (1)按0-59,60-69,70-79,80-89,90-100分组绘制高级语言程序设计成绩的频率分布直方图. (2)按0-59,60-69,70-7 ...

  5. 生成json文件写入本地

    public class Json { public static void main(String[] args) { String fullPath = null; //例如:fullPath=& ...

  6. webpack学习之路--demo1

    1.不使用框架建立webpack项目时 (1).npm init -y 生成package.json文件 (2).npm install --save-dev webpack 在当前项目下安装webp ...

  7. Python学习笔记:数据的处理

    上次的学习中有个split函数,照着head first Python上敲一遍代码: >>> with open('james.txt') as jaf: data=jaf.read ...

  8. What is the most efficient way to deep clone an object in JavaScript?

    What is the most efficient way to deep clone an object in JavaScript? Reliable cloning using a libra ...

  9. react-native 环境安装常见问题

    npm install react-native-cli -g react-native init yourproject npm install react-native run-ios 问题1:卡 ...

  10. Android6.0运行时权限的处理Demo

    MainActivity.java package com.loaderman.permissionsdemo; import android.Manifest; import android.con ...