【Spark机器学习速成宝典】模型篇07梯度提升树【Gradient-Boosted Trees】(Python版)
目录
梯度提升树原理
梯度提升树代码(Spark Python)
|
梯度提升树原理 |
待续...
|
梯度提升树代码(Spark Python) |
代码里数据:https://pan.baidu.com/s/1jHWKG4I 密码:acq1
# -*-coding=utf-8 -*-
from pyspark import SparkConf, SparkContext
sc = SparkContext('local') from pyspark.mllib.tree import GradientBoostedTrees, GradientBoostedTreesModel
from pyspark.mllib.util import MLUtils # Load and parse the data file.
data = MLUtils.loadLibSVMFile(sc, "data/mllib/sample_libsvm_data.txt")
'''
每一行使用以下格式表示一个标记的稀疏特征向量
label index1:value1 index2:value2 ... tempFile.write(b"+1 1:1.0 3:2.0 5:3.0\\n-1\\n-1 2:4.0 4:5.0 6:6.0")
>>> tempFile.flush()
>>> examples = MLUtils.loadLibSVMFile(sc, tempFile.name).collect()
>>> tempFile.close()
>>> examples[0]
LabeledPoint(1.0, (6,[0,2,4],[1.0,2.0,3.0]))
>>> examples[1]
LabeledPoint(-1.0, (6,[],[]))
>>> examples[2]
LabeledPoint(-1.0, (6,[1,3,5],[4.0,5.0,6.0]))
'''
# Split the data into training and test sets (30% held out for testing) 分割数据集,留30%作为测试集
(trainingData, testData) = data.randomSplit([0.7, 0.3]) # Train a GradientBoostedTrees model. 训练决策树模型
# Notes: (a) Empty categoricalFeaturesInfo indicates all features are continuous. 空的categoricalFeaturesInfo意味着所有的特征都是连续的
# (b) Use more iterations in practice. 在实践中使用更多的迭代步数
model = GradientBoostedTrees.trainClassifier(trainingData,
categoricalFeaturesInfo={}, numIterations=30) # Evaluate model on test instances and compute test error 评估模型
predictions = model.predict(testData.map(lambda x: x.features))
labelsAndPredictions = testData.map(lambda lp: lp.label).zip(predictions)
testErr = labelsAndPredictions.filter(
lambda lp: lp[0] != lp[1]).count() / float(testData.count())
print('Test Error = ' + str(testErr)) #Test Error = 0.0
print('Learned classification GBT model:')
print(model.toDebugString())
'''
TreeEnsembleModel classifier with 30 trees Tree 0:
If (feature 434 <= 0.0)
If (feature 100 <= 165.0)
Predict: -1.0
Else (feature 100 > 165.0)
Predict: 1.0
Else (feature 434 > 0.0)
Predict: 1.0
Tree 1:
If (feature 490 <= 0.0)
If (feature 549 <= 253.0)
If (feature 184 <= 0.0)
Predict: -0.4768116880884702
Else (feature 184 > 0.0)
Predict: -0.47681168808847024
Else (feature 549 > 253.0)
Predict: 0.4768116880884694
Else (feature 490 > 0.0)
If (feature 215 <= 251.0)
Predict: 0.4768116880884701
Else (feature 215 > 251.0)
Predict: 0.4768116880884712
...
Tree 29:
If (feature 434 <= 0.0)
If (feature 209 <= 4.0)
Predict: 0.1335953290513215
Else (feature 209 > 4.0)
If (feature 372 <= 84.0)
Predict: -0.13359532905132146
Else (feature 372 > 84.0)
Predict: -0.1335953290513215
Else (feature 434 > 0.0)
Predict: 0.13359532905132146
'''
# Save and load model
model.save(sc, "myGradientBoostingClassificationModel")
sameModel = GradientBoostedTreesModel.load(sc,"myGradientBoostingClassificationModel")
print sameModel.predict(data.collect()[0].features) #0.0
【Spark机器学习速成宝典】模型篇07梯度提升树【Gradient-Boosted Trees】(Python版)的更多相关文章
- 梯度提升树 Gradient Boosting Decision Tree
Adaboost + CART 用 CART 决策树来作为 Adaboost 的基础学习器 但是问题在于,需要把决策树改成能接收带权样本输入的版本.(need: weighted DTree(D, u ...
- 机器学习(七)—Adaboost 和 梯度提升树GBDT
1.Adaboost算法原理,优缺点: 理论上任何学习器都可以用于Adaboost.但一般来说,使用最广泛的Adaboost弱学习器是决策树和神经网络.对于决策树,Adaboost分类用了CART分类 ...
- 【Spark机器学习速成宝典】模型篇08保序回归【Isotonic Regression】(Python版)
目录 保序回归原理 保序回归代码(Spark Python) 保序回归原理 待续... 返回目录 保序回归代码(Spark Python) 代码里数据:https://pan.baidu.com/s/ ...
- 【Spark机器学习速成宝典】模型篇06随机森林【Random Forests】(Python版)
目录 随机森林原理 随机森林代码(Spark Python) 随机森林原理 参考:http://www.cnblogs.com/itmorn/p/8269334.html 返回目录 随机森林代码(Sp ...
- 【Spark机器学习速成宝典】模型篇05决策树【Decision Tree】(Python版)
目录 决策树原理 决策树代码(Spark Python) 决策树原理 详见博文:http://www.cnblogs.com/itmorn/p/7918797.html 返回目录 决策树代码(Spar ...
- 【Spark机器学习速成宝典】模型篇04朴素贝叶斯【Naive Bayes】(Python版)
目录 朴素贝叶斯原理 朴素贝叶斯代码(Spark Python) 朴素贝叶斯原理 详见博文:http://www.cnblogs.com/itmorn/p/7905975.html 返回目录 朴素贝叶 ...
- 【Spark机器学习速成宝典】模型篇03线性回归【LR】(Python版)
目录 线性回归原理 线性回归代码(Spark Python) 线性回归原理 详见博文:http://www.cnblogs.com/itmorn/p/7873083.html 返回目录 线性回归代码( ...
- 【Spark机器学习速成宝典】模型篇02逻辑斯谛回归【Logistic回归】(Python版)
目录 Logistic回归原理 Logistic回归代码(Spark Python) Logistic回归原理 详见博文:http://www.cnblogs.com/itmorn/p/7890468 ...
- 【Spark机器学习速成宝典】模型篇01支持向量机【SVM】(Python版)
目录 支持向量机原理 支持向量机代码(Spark Python) 支持向量机原理 详见博文:http://www.cnblogs.com/itmorn/p/8011587.html 返回目录 支持向量 ...
随机推荐
- java实现spark常用算子之intersection
import org.apache.spark.SparkConf;import org.apache.spark.api.java.JavaRDD;import org.apache.spark.a ...
- 01 Mysql数据库初识
一.数据库概述 1.什么是数据库? 什么是数据库呢? 先来看看百度怎么说的 数据库,简而言之可视为电子化的文件柜——存储电子文件的处所,用户可以对文件中的数据运行新增.截取.更新.删除等操作. 所谓“ ...
- Django框架——基础之模板系统(template文件夹)
---恢复内容开始--- 1. 常用语法 需要记住两组特殊符号:{{ }} 和 {% %}. 在运用到变量的时候使用{{ }},如果是跟逻辑相关的话就使用{% %}. 在Django模板(t ...
- LaTeX的tasks宏包
tasks 宏包 LaTeX的列表(list)通常是将项(item,条目)一个一个垂直的平行显示,所谓"列"表的由来. 水平分列列表,即将多个项分散到各列而不是一列,在出考卷的选择 ...
- 服务命令(systemctl的使用)
常用的service与systemctl命令的对比 应用举例: ●start:开启服务 ●stop:停止服务 ●status:参数来查看服务运行情况 ●restart:重新加载服务 应用举例·: #启 ...
- 10.1、LNMT架构
Java环境安装包下载路径: https://www.oracle.com/technetwork/java/javase/downloads/jdk8-downloads-2133151.htm ...
- 微服务架构:构建PHP微服务生态
微服务架构:构建PHP微服务生态 Linux系统技术交流QQ群(1675603)验证问题答案:刘遄 导读 诞生于 2014 年的“微服务架构”,其思想经由 Martin Fowler 阐述后,在近 ...
- 记一次部署PHP遇到的编码问题故障
php开发给我项目和数据库,我按正常部署流程部署,开始发现之梦的后台登陆不了,后发现是属主属组不对,代码直接解压后是root的,更改后,后台能登陆,但部分显示乱码.后将正常的数据库文件重新导入后,显示 ...
- QT 给工程添加图片
先打开如图的打开方式 然后我们看到以下的画面,选择下面的 然后我们选择如下:,这里我们要注意我们的图片资源有一定要和QRC资源在同一个文件夹中 之后我们通过在stylesheet里面设置来使用我们添加 ...
- linux系统使用grep命令提取文件的基名或者路径名
效果等于~]#dirname /etc/sysconfig/network-scripts/ifcfg-ens33 echo "/etc/sysconfig/network-scripts/ ...