[CSP-S模拟测试]:题(DP)
题目描述
由于出题人赶时间所以没办法编故事来作为背景。
一开始有$n$个苹果,$m$个人依次来吃苹果,第$i$个人会尝试吃$u_i$或$v_i$号苹果,具体来说分三种情况。
$\bullet 1.$两个苹果都还在,那么这个人将随便选一个苹果吃了。
$\bullet 2.$只有一个苹果,那么这个人将吃掉这个苹果。
$\bullet 3.$都不在了,这个人吃不到苹果就走了。
请问有多少对苹果$(i,j)(i<j)$满足它们两个都幸存下来的概率$>0$。
输入格式
第一行两个数$n,m$。
接下来$m$行,每行两个数$u_i,v_i$。
输出格式
一个数表示答案。
样例
样例输入:
4 3
1 2
3 4
2 3
样例输出:
1
数据范围与提示
样例解释:
只有$(1,4)$满足条件。
数据范围:
对于测试点$1\sim 5$:$n,m\leqslant 20$。
对于测试点$5\sim 8$:若把苹果看做点,人看做边,那么会形成一棵树。
对于测试点$9\sim 15$:$m\leqslant 400$。
对于测试点$16\sim 25$:无特殊限制。
对于所有的数据,$n\leqslant 400,m\leqslant 5\times 10^4$。
题解
考虑一个类似$DP$的做法,定义$f_k(S)$表示$k$个人来过之后,$S$集合的苹果是否都还没有被吃的概率,那么我们可以列出状态转移方程:
$\alpha.u_i,v_i\in S,f_k(S)=0$,都在这个集合肯定不行,因为这两个苹果不能共同存活。
$\beta.u_i\in S,f_k(S)=f_{k-1}(S\cup\{u_i\})$,相当与上一次可以有它,但是这一次就不能有了。
$\gamma.v_i\in S,f_k(S)=f_{k-1}(S\cup\{v_i\})$,同上。
$delta.u_i,v_i\notin S,f_k(S)=f_{k-1}(S)$,如果都不在,肯定没问题。
但是我们最后可能会得到好多的集合,选最小的一个?
肯定不行,那么我们考虑在转化一下思路。
逆着推,那么状态转移方程就变成了:
$\alpha.u_i,v_i\in S$,推不动了。
$\beta.u_i\in S,f_k(S\cup\{u_i\})=f_{k+1}(S)$。
$\gamma.v_i\in S,f_k(S\cup\{v_i\})=f_{k+1}()S$。
$delta.u_i,v_i\notin S,f_k(S)=f_{k+1}(S)$。
初始值$f_m(i)=1$。
时间复杂度:$\Theta(n\times n+n^2)$。
期望得分:$100$分。
实际得分:$100$分。
代码时刻
#include<bits/stdc++.h>
using namespace std;
int n,m;
bool vis[401];
pair<int,int> e[50001];
bool bit[401][401];
int ans;
int main()
{
scanf("%d%d",&n,&m);
for(int i=1;i<=m;i++)
scanf("%d%d",&e[i].first,&e[i].second);
for(int i=1;i<=n;i++)
{
bit[i][i]=1;
for(int j=m;j;j--)
{
if(bit[i][e[j].first]&&bit[i][e[j].second])vis[i]=1;
if(bit[i][e[j].first]||bit[i][e[j].second])bit[i][e[j].first]=bit[i][e[j].second]=1;
}
}
for(int i=1;i<=n;i++)
for(int j=1;j<=n;j++)
{
for(int k=1;k<=n;k++)
if(vis[i]||vis[j]||bit[i][k]&&bit[j][k])goto nxt;
ans++;
nxt:;
}
printf("%d",ans>>1);
return 0;
}
rp++
[CSP-S模拟测试]:题(DP)的更多相关文章
- [CSP-S模拟测试]:题(DP+数学)
题目描述 出个题就好了.这就是出题人没有写题目背景的原因.你在平面直角坐标系上.你一开始位于$(0,0)$.每次可以在上/下/左/右四个方向中选一个走一步.即:从$(x,y)$走到$(x,y+1),( ...
- noi2019模拟测试赛(四十七)
noi2019模拟测试赛(四十七) T1与运算(and) 题意: 给你一个序列\(a_i\),定义\(f_i=a_1\&a_2\&\cdots\&a_i\),求这个序列的所 ...
- [考试反思]1003csp-s模拟测试58:沉淀
稳住阵脚. 还可以. 至少想拿到的分都拿到了,最后一题的确因为不会按秩合并和线段树分治而想不出来. 对拍了,暴力都拍了.挺稳的. 但是其实也有波折,险些被卡内存. 如果内存使用不连续或申请的内存全部使 ...
- csp-s模拟测试98
csp-s模拟测试98 $T1$??不是我吹我轻松手玩20*20.$T2$装鸭好像挺可做?$T3$性质数据挺多提示很明显? $One$ $Hour$ $Later$ 这$T1$什么傻逼题真$jb$难调 ...
- csp-s模拟测试97
csp-s模拟测试97 猿型毕露.水题一眼秒,火题切不动,还是太菜了. $T1$看了一会儿感觉$woc$期望题$T1??$假的吧??. $T2$秒. $T3$什么玩意儿. 40 01:24:46 00 ...
- csp-s模拟测试95
csp-s模拟测试95 去世场祭. $T1$:这不裸的除法分块吗. $T2$:这不裸的数据结构优化$Dp$吗. $T3$:这不裸的我什么都不会搜索骗$30$分吗. 几分钟后. 这除法分块太劲了..(你 ...
- csp-s模拟测试93
csp-s模拟测试93 自闭场. $T1$想到$CDQ$,因为复杂度少看见一个$0$打了半年还用了$sort$直接废掉,$T2$,$T3$直接自闭暴力分都没有.考场太慌了,心态不好. 02:07:34 ...
- csp-s模拟测试92
csp-s模拟测试92 关于$T1$:最短路这一定建边最短路. 关于$T2$:傻逼$Dp$这一定线段树优化$Dp$. 关于$T3$:最小生成树+树P+换跟一定是这样. 深入(?)思考$T1$:我是傻逼 ...
- csp-s模拟测试91
csp-s模拟测试91 倒悬吃屎的一套题. $T1$认真(?)分析题意发现复杂度不能带$n$(?),计划直接维护答案,考虑操作对答案的影响,未果.突然发现可以动态开点权值线段树打部分分,后来$Tm$一 ...
随机推荐
- 42 grant与flush privileges
42 grant与flush privileges 在mysql里, grant是给用户赋权的,一些文档中经常提到在grant执行后,马上执行一个flush privileges,才能使赋权语句生效, ...
- Docker image 和 volume 的关系
image :镜像 虚拟机容器需要加载image才能运行,镜像中打包了构建好服务的运行环境. Docker images are the basis of containers. An Image i ...
- 基于3ds Max的游戏建模方案
前言 需求 由于本游戏的设计,需求使用到角色以及场景建模.具体模型的搭建与贴图的设计根据原画进行. 工具 一般在游戏研发中,模型的搭建主要使用以下工具和概念来渲染建模. 3ds Max 3ds Max ...
- LeetCode——707 设计链表
题目: 总而言之就是要用C++手撸链表,我的代码: class MyLinkedList { public: /** Initialize your data structure here. */ M ...
- mooc-IDEA postfix--007
十三.IntelliJ IDEA -postfix 代码中输入: 总结常用的postfix: 1.for (<=>100.fori) 2.sout (<=>System.ou ...
- pandas 入门(3)
from pandas import Series, DataFrame, Index import numpy as np # 层次化索引 对数据重塑和分组操作很有用 data = Series(n ...
- 浅谈WebService开发三(动态调用WebService)转
在前两讲里,我已经向大家演示了如何使用WebService.同步, 异步调用WebService,而在实际开发过程中,可能会有多个WebService接口供你选择,而在程序执行过程中才决定使用哪一个 ...
- WOJ#3882 旅行问题(POI2004)
描述 John打算驾驶一辆汽车周游一个环形公路.公路上总共有n车站,每站都有若干升汽油(有的站可能油量为零),每升油可以让汽车行驶一千米.John必须从某个车站出发,一直按顺时针(或逆时针)方向走遍所 ...
- jQuery 的attr()与css()的区别
attr是attribute的缩写,意思是标签属性. css是,样式,意思是元素的style样式的 我的理解是: attr是操作元素的 属性 css是操作元素的 style属性 前者可以修改&l ...
- P5443 [APIO2019]桥梁
传送门 子任务 $4$ 告诉我们可以离线搞带权并查集 从大到小枚举询问,从大到小连边 如果没有修改操作就可以过了 但是有修改,考虑最暴力的暴力,搞可撤销并查集 同样先离线,从大到小处理询问时,按原边权 ...