求 $\sum_{i=L}^{R}\sum_{i'=L}^{R}....[gcd_{i=1}^{n}(i)==k]$
 
$\Rightarrow \sum_{i=\frac{L}{k}}^{\frac{R}{k}}\sum_{i'=\frac{L}{k}}^{\frac{R}{k}}....[gcd_{i=1}^{n}(i)==1]$
 
$\Rightarrow \sum_{i=\frac{L}{k}}^{\frac{R}{k}}\sum_{i'=\frac{L}{k}}^{\frac{R}{k}}....\sum_{d|gcd_{i=1}^{n}(i)}\mu(d)$
 
$\Rightarrow\sum_{d=1}^{\frac{R}{d}}\mu(d)(\left \lfloor \frac{R}{kd} \right \rfloor-\left \lfloor \frac{L-1}{kd} \right \rfloor)^n$
 
用杜教筛算莫比乌斯函数前缀和,整除分块算一下就行.
#include<bits/stdc++.h>
#define maxn 1040000
#define M 1000001
#define inf 0x7f7f7f7f
#define ll long long
using namespace std;
ll mod = 1000000007;
void setIO(string s)
{
string in=s+".in";
freopen(in.c_str(),"r",stdin);
}
map<int,ll>ansmu;
int cnt;
bool vis[maxn];
int prime[maxn], mu[maxn];
ll sumv[maxn];
ll qpow(ll base,ll k)
{
ll tmp=1;
while(k)
{
if(k&1) tmp=tmp*base%mod;
base=base*base%mod;
k>>=1;
}
return tmp;
}
void Linear_shaker()
{
mu[1]=1;
int i,j;
for(i=2;i<=M;++i)
{
if(!vis[i]) prime[++cnt]=i, mu[i]=-1;
for(j=1;j<=cnt&&1ll*i*prime[j]<=M;++j)
{
vis[i*prime[j]]=1;
if(i%prime[j]==0)
{
mu[i*prime[j]]=0;
break;
}
mu[i*prime[j]]=-mu[i];
}
}
for(i=1;i<=M;++i) sumv[i]=(sumv[i-1]+mu[i]+mod)%mod;
}
ll get(ll n)
{
if(n<=M) return sumv[n];
if(ansmu[n]) return ansmu[n];
ll i,j,re=0;
for(i=2;i<=n;i=j+1)
{
j=(n/(n/i));
re=(re+(j-i+1)%mod*get(n/i)%mod+mod)%mod;
}
return ansmu[n]=(1ll-re+mod)%mod;
}
int main()
{
// setIO("input");
ll n,k,L,R,i,j,re=0;
scanf("%lld%lld%lld%lld",&n,&k,&L,&R);
L = (L - 1) / k, R = R / k;
Linear_shaker();
for(i=1;i<=R;i=j+1)
{
j=min(R/(R/i), L/i?L/(L/i):inf);
re=(re+qpow(R/i-L/i, n) * (get(j)-get(i-1)+mod)%mod)%mod;
}
printf("%lld\n",re);
return 0;
}

  

BZOJ 3930: [CQOI2015]选数 莫比乌斯反演 + 杜教筛的更多相关文章

  1. 【bzoj3930】[CQOI2015]选数 莫比乌斯反演+杜教筛

    题目描述 我们知道,从区间[L,H](L和H为整数)中选取N个整数,总共有(H-L+1)^N种方案.小z很好奇这样选出的数的最大公约数的规律,他决定对每种方案选出的N个整数都求一次最大公约数,以便进一 ...

  2. luogu3172 [CQOI2015]选数 莫比乌斯反演+杜教筛

    link 题目大意:有N个数,每个数都在区间[L,H]之间,请求出所有数的gcd恰好为K的方案数 推式子 首先可以把[L,H]之间的数字gcd恰好为K转化为[(L-1)/K+1,H/K]之间数字gcd ...

  3. [BZOJ 3930] [CQOI 2015]选数(莫比乌斯反演+杜教筛)

    [BZOJ 3930] [CQOI 2015]选数(莫比乌斯反演+杜教筛) 题面 我们知道,从区间\([L,R]\)(L和R为整数)中选取N个整数,总共有\((R-L+1)^N\)种方案.求最大公约数 ...

  4. BZOJ 3930: [CQOI2015]选数 莫比乌斯反演

    https://www.lydsy.com/JudgeOnline/problem.php?id=3930 https://blog.csdn.net/ws_yzy/article/details/5 ...

  5. BZOJ 4176 Lucas的数论 莫比乌斯反演+杜教筛

    题意概述:求,n<=10^9,其中d(n)表示n的约数个数. 分析: 首先想要快速计算上面的柿子就要先把d(ij)表示出来,有个神奇的结论: 证明:当且仅当a,b没有相同的质因数的时候我们统计其 ...

  6. [复习]莫比乌斯反演,杜教筛,min_25筛

    [复习]莫比乌斯反演,杜教筛,min_25筛 莫比乌斯反演 做题的时候的常用形式: \[\begin{aligned}g(n)&=\sum_{n|d}f(d)\\f(n)&=\sum_ ...

  7. BZOJ 3930: [CQOI2015]选数 递推

    3930: [CQOI2015]选数 Time Limit: 20 Sec Memory Limit: 256 MB 题目连接 http://www.lydsy.com/JudgeOnline/pro ...

  8. 【刷题】BZOJ 3930 [CQOI2015]选数

    Description 我们知道,从区间[L,H](L和H为整数)中选取N个整数,总共有(H-L+1)^N种方案.小z很好奇这样选出的数的最大公约数的规律,他决定对每种方案选出的N个整数都求一次最大公 ...

  9. 【BZOJ3930】[CQOI2015]选数 莫比乌斯反演

    [BZOJ3930][CQOI2015]选数 Description 我们知道,从区间[L,H](L和H为整数)中选取N个整数,总共有(H-L+1)^N种方案.小z很好奇这样选出的数的最大公约数的规律 ...

随机推荐

  1. JavaScript 基础类型,数据类型

    1.基础类型:undefined,null,Boolean,Number,String,Symbol Undefined类型:一个没有被赋值的变量会有个默认值undefined; Null类型:nul ...

  2. python绘制五角星

    问题描述: python中运用turtle图形模块绘制五角星 问题分析: turtle绘制图形时,得知图形中重要点的坐标非常重要. 于是,绘制五角星问题转化成为一个数学问题,计算五个顶点坐标即可. 已 ...

  3. 安全运维 - Linux系统攻击应急响应

    Linux 应急相应 - 总纲 应急准备: 制定应急策略 组建应急团队 其他应急资源 安全事件处理: 痕迹数据获取 分析.锁定攻击源删除可疑账号关闭异常进程.端口禁用相应异常开机启动项删除异常定时任务 ...

  4. centos7安装配置jdk、tomcat

    centos7安装jdk1.8 1.新建文件夹java,上传文件jdk-8u111-linux-x64.tar.gz到java文件夹 2.解压tar包: tar -zxvf jdk-8u111-lin ...

  5. JQuery关于span标签的取值赋值

    span取值赋值方法有别于一般的页面元素.JQ://赋值$("#spanid").html("hello world") //取值$("#spanid ...

  6. oracle--少见操作、如何调整dos窗口大小、字符集设置

    如何调整dos窗口大小 1.set linesize 400; 2.右键 --默认值 断开.连接 disconn ; conn ww/ww; 关于字符集 操作系统环境变量针对语言项设置有几个,我经常设 ...

  7. java面向对象基础总结

    本周学习了java面向对象的一些基本概念,介绍了它三个主要特性,封装性.继承性.多态性,类与对象的关系,栈堆的关系,三个特性中主要讲了封装性,其他两个后面再讲. 类实际上是表示一个客观世界某类群体的一 ...

  8. SQL的“增删改”

    结构语言分类 DDL(数据定义语言)  create  drop  alter   创建删除以及修改数据库,表,存储过程,触发器,索引.... DML(数据操作语言)   insert  delete ...

  9. Git 本地创建分支并提交远程分支

    在本地git checkout -b xxx 创建分支之后 想要提交分支到远程, 直接git push是不行的, 除非原来的分支里面就有这个分支. 需要先使用:git push origin  xxx ...

  10. 1.go语言目录结构

    [root@localhost ~]# ll /go/ total drwxr-xr-x. root root May : api -rw-r--r--. root root May : AUTHOR ...