题目地址

CF1260C

题目大意

现有\(10^{100}\)块木板需要涂漆,第x块如果是x是a的倍数,则涂一种颜色,是b的倍数,则涂另一种颜色。如果既是a又是b的倍数,那么两种颜色都可以涂;如果连续有k块板的颜色是一样的,则输出REBEL,否则输出OBEY。问是否能避免被处死。我们肯定优先使不被处死。

Solution

一周前被这个题目吊打,一周后吊打这个题目

令 \(a < b\)。b染的色就会是 \(1b,2b,...,kb\) 这些格子,而最长的颜色段应该是由 \(a\) 的倍数组成的,而且一定是在两个 \(b\) 的倍数之间。两个 \(b\) 的倍数间有 \(b-1\) 个格子,是固定的,想要让这中间 \(a\) 的倍数尽可能多,就要让段 \(a\) 的倍数中的第一个数离上一个 \(b\) 的倍数最近。假设这个距离为 \(c\),那么就相当于满足方程:

\[ax+by=c
\]

(这不就是扩展欧几里得吗!!!)别激动,我们只要考虑当这个方程有解时,\(c\) 可以取的最小的正整数是多少。所以这是裴蜀定理。因为要使这个方程有解,就要满足 \(gcd(a,b)|c\) 所以 \(c\) 最小取 \(gcd(a,b)\)

处理一下细节,最长的连续的颜色就会是 (b-gcd(a,b)-1)/a)+1 (先单独算上 \(gcd(a,b)\) 这个位置的这个 \(1\),后面这段每 \(a\) 个数就有一个 \(1\))

Code

Talk is cheap.Show me the code.

#include<bits/stdc++.h>
using namespace std;
inline int read() {
int x=0,f=1; char ch=getchar();
while(ch<'0' || ch>'9') { if(ch=='-') f=-1; ch=getchar(); }
while(ch>='0'&&ch<='9') { x=(x<<3)+(x<<1)+(ch^48); ch=getchar(); }
return x * f;
}
int a,b,K;
int gcd(int a,int b) {
return (b==0?a:gcd(b,a%b));
}
void work() {
a = read(), b = read(), K = read();
if(a>b) swap(a,b);
printf("%s\n",(((b-gcd(a,b)-1)/a)+1<K?"OBEY":"REBEL"));
}
int main()
{
int T = read();
while(T--) work();
return 0;
}

Summary

这道题好水呀,注意细节就OK啦

CF1260C Infinite Fence 题解(扩欧)的更多相关文章

  1. CF1182F Maximum Sine【类欧,扩欧】

    题目链接:洛谷 题目描述:求整数$x\in [a,b]$使得$|2px \ mod \ 2q-q|$最小,如果有多个$x$输出最小的. 数据范围:$1\leq a,b,p,q\leq 10^9$ 第一 ...

  2. 【POJ】2115 C Looooops(扩欧)

    Description A Compiler Mystery: We are given a C-language style for loop of type for (variable = A; ...

  3. 洛谷P4774 [NOI2018]屠龙勇士 [扩欧,中国剩余定理]

    传送门 思路 首先可以发现打每条龙的攻击值显然是可以提前算出来的,拿multiset模拟一下即可. 一般情况 可以搞出这么一些式子: \[ atk_i\times x=a_i(\text{mod}\ ...

  4. 【洛谷】【扩欧】P1516 青蛙的约会

    [题目描述] 两只青蛙在网上相识了,它们聊得很开心,于是觉得很有必要见一面.它们很高兴地发现它们住在同一条纬度线上,于是它们约定各自朝西跳,直到碰面为止.可是它们出发之前忘记了一件很重要的事情,既没有 ...

  5. 欧几里得(辗转相除gcd)、扩欧(exgcd)、中国剩余定理(crt)、扩展中国剩余定理(excrt)简要介绍

    1.欧几里得算法(辗转相除法) 直接上gcd和lcm代码. int gcd(int x,int y){ ?x:gcd(y,x%y); } int lcm(int x,int y){ return x* ...

  6. Educational Codeforces Round 77 (Rated for Div. 2) C. Infinite Fence

    C. Infinite Fence 题目大意:给板子涂色,首先板子是顺序的,然后可以涂两种颜色,如果是r的倍数涂成红色,是b的倍数涂成蓝色, 连续的k个相同的颜色则不能完成任务,能完成任务则输出OBE ...

  7. 【POJ】 1061 青蛙的约会(扩欧)

    青蛙的约会 Time Limit: 1000MS   Memory Limit: 10000K Total Submissions: 119148   Accepted: 25070 Descript ...

  8. 【NOI 2018】屠龙勇士(扩欧)

    题意理解错了... 一把剑打一条龙,打了$x$次后如果龙不死,你就Game Over了. 显然,面对每条龙使用的剑是固定的,如果所有龙中有一条没打死你就挂了. 可以知道,可行的答案集合就是所有龙的可行 ...

  9. 【POJ】1061 青蛙的约会 / 【BZOJ】1477(扩欧)

    青蛙的约会 Time Limit: 1000MS   Memory Limit: 10000K Total Submissions: 119148   Accepted: 25070 Descript ...

随机推荐

  1. LeetCode_70.爬楼梯

    LeetCode-70 LeetCode_70.爬楼梯 假设你正在爬楼梯.需要 n 阶你才能到达楼顶. 每次你可以爬 1 或 2 个台阶.你有多少种不同的方法可以爬到楼顶呢? 注意:给定 n 是一个正 ...

  2. 点云网格化算法---MPA

    MPA网格化算法思路 第一步:初始化一个种子三角面.(随机选点,基于该点进行临近搜索到第二点:在基于该线段中点临近搜索到第三点) 图1 第二步:在种子三角面的基础上,进行面片的扩充,利用边的中点进行临 ...

  3. 【C++ STL 优先队列priority_queue】

    https://www.cnblogs.com/fzuljz/p/6171963.html

  4. hdu 6219 Empty Convex Polygons (凸包)

    给你n个点,求面积最大的凸多边形,使得这个凸多边形没有内点. 考虑求凸包的graham算法,需要找到左下角的点,再进行极角排序后按顺序扫点,所以先枚举左下角的点. 这个过程中,如果遇到内点,就需要把这 ...

  5. 移动端自动化==>Windows-Android-Appium环境搭建

    第一步 安装JDK,本机如果带有1.7及以上版本且配置好了环境变量,则可忽略此安装步骤. JDK的安装包,百度下载即可.安装完成后配置环境变量. cmd下验证环境变量是否配置成功 第二步 安装Andr ...

  6. big data env setup

    install Spark on CentOS: https://aodba.com/how-to-install-apache-spark-in-centos-standalone/ https:/ ...

  7. word2vec (CBOW、分层softmax、负采样)

    本文介绍 wordvec的概念 语言模型训练的两种模型CBOW+skip gram word2vec 优化的两种方法:层次softmax+负采样 gensim word2vec默认用的模型和方法 未经 ...

  8. 【Linux开发】Linux动态链接库搜索路径问题

    说明:下列内容是从网上获取的,未经验证,仅作参考之用 动态库的搜索路径搜索的先后顺序是: (1).编译目标代码时指定的动态库搜索路径:(2).环境变量LD_LIBRARY_PATH指定的动态库搜索路径 ...

  9. Kotlin-Note

    数字在需要一个可空的引用时,会进行装箱操作,数字装箱不一定保留同一性. val a = 1000 println(a === a) // 输出 "true" val boxedA ...

  10. 惠普IPMI登陆不上

    [问题描述] IPMI登陆不上(HP),点击无反应. 浏览器使用IE,java版本使用32位1.7版本. [问题原因] 保护此网站的证书使用弱加密,即 SHA1.此网站应该在 SHA1 被禁用之前将该 ...