CodeForces - 1175E Minimal Segment Cover (倍增优化dp)
题意:给你n条线段[l,r]以及m组询问,每组询问给出一组[l,r],问至少需要取多少个线段可以覆盖[l,r]区间中所有的点。
如果贪心地做的话,可以求出“从每个左端点l出发选一条线段可以到达的最右端点”,然后一直往右跳直到跳到r为止,但最坏情况下需要跳O(n)次显然是会T的,那咋办呢?
我们拓展一下,利用倍增的方法,可以预处理出“从每个左端点l出发选2^k条线段可以到达的最右端点”,设为$dp[l][k]$,则有$dp[l][k]=dp[dp[l][k-1]][k-1]$,对于每组询问,让k从大到小依次尝试,如果从l跳2^k步跳不到到r,那么答案就加上2^k。(非常类似于树上倍增求LCA的过程)
#include<bits/stdc++.h>
using namespace std;
typedef long long ll;
const int N=5e5+,inf=0x3f3f3f3f;
int dp[N][],n,m;
int main() {
scanf("%d%d",&n,&m);
while(n--) {
int l,r;
scanf("%d%d",&l,&r);
dp[l][]=max(dp[l][],r);
}
for(int i=; i<N; ++i)dp[i][]=max(dp[i][],dp[i-][]);
for(int k=; k<; ++k)
for(int i=; i<N; ++i)
dp[i][k]=dp[dp[i][k-]][k-];
while(m--) {
int l,r;
scanf("%d%d",&l,&r);
int ans=;
for(int k=; k>=; --k)
if(dp[l][k]<r)ans^=(<<k),l=dp[l][k];
printf("%d\n",dp[l][]<r?-:ans+);
}
return ;
}
CodeForces - 1175E Minimal Segment Cover (倍增优化dp)的更多相关文章
- Codeforces 1175E Minimal Segment Cover
题意: 有\(n\)条线段,区间为\([l_i, r_i]\),每次询问\([x_i, y_i]\),问要被覆盖最少要用多少条线段. 思路: \(f[i][j]\)表示以\(i\)为左端点,用了\(2 ...
- codeforces1175E Minimal Segment Cover 倍增
题目传送门 题意:给出n条平行于x轴的线段,q次询问,每次询问一个区间最少要几条线段来覆盖,若不能覆盖则输出-1. 思路:先考虑贪心,必定是先找到,所有左端点小于等于$x$的线段的右端点最大在哪里,然 ...
- HZOJ 20190727 随(倍增优化dp)
达哥T1 实际上还是挺难的,考试时只qj20pts,还qj失败 因为他专门给出了mod的范围,所以我们考虑把mod加入时间复杂度. $50\%$算法: 考虑最暴力的dp,设$f[i][j]$表示进行$ ...
- CodeForces 311 B Cats Transport 斜率优化DP
题目传送门 题意:现在有n座山峰,现在 i-1 与 i 座山峰有 di长的路,现在有m个宠物, 分别在hi座山峰,第ti秒之后可以被带走,现在有p个人,每个人会从1号山峰走到n号山峰,速度1m/s.现 ...
- $Noip2012\ Luogu1081$ 开车旅行 倍增优化$ DP$
Luogu Description Sol 1.发现对于每个城市,小A和小B的选择是固定的,可以预处理出来,分别记为ga[],gb[] 2.并且,只要知道了出发城市和出发天数,那么当前城市和小A,小B ...
- CodeForces 834D The Bakery(线段树优化DP)
Some time ago Slastyona the Sweetmaid decided to open her own bakery! She bought required ingredient ...
- Codeforces 570E - Pig and Palindromes - [滚动优化DP]
题目链接:https://codeforces.com/problemset/problem/570/E 题意: 给出 $n \times m$ 的网格,每一格上有一个小写字母,现在从 $(1,1)$ ...
- Codeforces 643C Levels and Regions 斜率优化dp
Levels and Regions 把dp方程列出来, 把所有东西拆成前缀的形式, 就能看出可以斜率优化啦. #include<bits/stdc++.h> #define LL lon ...
- CodeForces - 1073E :Segment Sum (数位DP)
You are given two integers l l and r r (l≤r l≤r ). Your task is to calculate the sum of numbers from ...
随机推荐
- 外连接的用法 -- 《SQL进阶教程》 jupyter note
import pandas as pd import sqlite3 conn = sqlite3.connect('1-5.db') 用外连接进行行列转换1(行 -> 列): 制作交叉表 怎么 ...
- 【机器学习】Learning to Rank之Ranking SVM 简介
Learning to Rank之Ranking SVM 简介 排序一直是信息检索的核心问题之一,Learning to Rank(简称LTR)用机器学习的思想来解决排序问题(关于Learning t ...
- C语言中typedef,条件编译,结构体的说明
目录 typedef (类型别名) 条件编译 条件编译在头文件包含中的应用 结构体 使用结构体定义新的结构体变量 结构体成员的引用与赋值 结构体指针及其引用 typedef (类型别名) typede ...
- subquery 子查询
#encoding: utf-8 from sqlalchemy import create_engine,Column,Integer,String,Float,func,and_,or_,Enum ...
- Akka简介与Actor模型(一)
前言...... Akka是一个构建在JVM上,基于Actor模型的的并发框架,为构建伸缩性强,有弹性的响应式并发应用提高更好的平台.本文主要是个人对Akka的学习和应用中的一些理解. Actor模型 ...
- 关于Linux文本处理“三剑客”的一些小操作。
Linux文本处理“三剑客”,即grep.sed.awk,这是Linux中最核心 的3个命令. 一.首先做个简单的介绍: 1.awk:linux三剑客老大,过滤,输出内容,一门语言.NR代表行号. 2 ...
- python 爬虫小案例
爬取百度贴吧帖子信息 #!/usr/bin/env python # -*- coding: utf-8 -*- # author: imcati import requests,re,time cl ...
- Go语言中 Print,Println 和 Printf 的区别(八)
Print 和 Println 这两个打印方式类似,只在格式上有区别 1. Println 打印的每一项之间都会有空行,Print 没有,例如: fmt.Println("go", ...
- # 模乘(解决乘法取模爆long long)
模乘(解决乘法取模爆long long) 二进制思想,变乘法为多次加法,具体思想跟着代码手算一遍就理解了,挺简单的 ll qmul(ll a,ll b,ll m) { ll ans=0; while( ...
- 使用Python基于HyperLPR/Mask-RCNN的中文车牌识别
基于HyperLPR的中文车牌识别 Bolg:https://blog.csdn.net/lsy17096535/article/details/78648170 https://www.jiansh ...